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PREFACE

The 1990 U.S. Army Chemical Research, Development and Engineering Center
Scientific Conference on Obscuration and Aerosol Research was held 25 - 28 June
1990 at the Edgewood Area Conference Center of Aberdeen Proving Ground, MD. The
Conference is held annually, the last full week in June, under the direction of Dr.
Edward Steubing, Research Area Coordinator, Aerosol Science. This report was
authorized under project number 10 161102A71A, Research in CW/CB Defense.

The Conference is an informal forum for scientific exchange and stimulation
among investigators in the wide variety of disciplines required for aerosol research,
including a description of an obscuring aerosol and its effects. The participants develop
some familiarity with the U.S. Army aerosol and obscuration science research programs
and also become personally acquainted with the other investigators and their research
interests and capabilities. Each attendee is invited to present any aspect of a topic of
interest and may make last minute changes or alterations in his presentation as the flow
of ideas in the Conference develops.

While all participants in the Conference are invited to submit papers for the
proceedings of the Conference, each investigator, who is funded by the U.S. Army
Research Program, 's requested to provide one or more written papers that document
specifically the progress made in his funded effort in the previous year and indicating
tuture directions. Also, the papers for the proceedings are collected in the Fall to allow
time for the fresh ideas that arise at the Conference to be incorporated. Therefore,
while the papers in these proceedings tend to closely correspond to what was
presented at the Conference, there is not an exact correspondence.

The reader will find the items relating to the Conference itself, photographs,
the list of attendees, and the agenda in the appendixes following the papers and in the
indexes pertaining to them.

The use of trade names or manufacturers' names in this report does not
constitute an official endorsement of any commercial products. This report may not be
cited for purposes of advertisement.

Reproduction of this document in whole or in part is prohibited except with
permission of the Commander, U.S. Army Chemical Research, Development and
Engineering Center, ATTN: SMCCR-SPS-T, Aberdeen Proving Ground, MD 21010-
5423. However, the Defense Technical Information Center and the National Technical
Information Service are authorized to reproduce this document for U.S. Government
purposes. k"-e•fisga• •'=r

This report has been approved for release to the public, ] •':"
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PRCCEEDINGS OF THE 1990 SCIENTIFIC CONFERENCE ON OBSCURATION AND AEROSOL RESEARCH
I. AEROSOL DYNAMICS

MEUSUREMENT OF THE MASS TRANSFER COEFFICIENT FOR THE
A[jQ)j.PT!QN OE METHYL SALICYLATCE ON FINE PARTICULATE AEROSOLS

IN A VERTICAL TRANSPORT LINE IN1 DILUTE PHASE FLOW

H. Littman and M. H. Morgan III
Rensselaer Polytechnic Institute

Troy, New York 12180-3590

RECENT PUBLICATIONS, SUBMITTAL FOR PUBLICATION AND PRESENTATIONS:

A) Littman, H., M. H. Morgan III, D. K. 'Prapas and G. 0. Rubel, "An Automated
System for Measuring the Mass Flowrate of. Powders in Transport Lines," CRDEC-TN-
013 Report January 1990, CRDEC Aberdeen, MD.

ABSTRACT

Purpose of %, rk

In this paper, we give a method of measuring the rate of absorption of chemical
agents such as methyl salicylate on fine particulate aerosols for the purpose of
removing toxic vapors from the battlefield.

Experimental measurement of the mass transfer coefficient in a transport line

The race of absorption of a gas on to a particulate aerosol in a vertical transport
line is to be measured to determine the mass transfer coefficient.

Consider a dilute mixture of component A in air coflowing with fine particles
vertically in a pipe. There is a short acceleration zone near the inlet to the pipe after
which the flow is non-accelerating. The voidage then becomes constant as does the
local pressure gradient.

Ccnponent A (methyl salicylate) is introduced in the non-accelerating region
and its mass transfer to the fine particles over 10 feet of the transport line is
determined by sampling the gas and chromatographically analyzing it.

To determine the mass transfer coefficient, we start with the mass balance in
one dimensional flow for compo.nent A in the line.

ePf at + EpfU + (1-e)pp RA = 0 (1)

We assume that the flo- is radially uniform and the temperature constant, and
define the reaction rate as
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RA NA a MA (2)( 18-)Pp

The rate equation for the absorption can be written in terms of the mass

transfer coefficient as

NAa Koa (PA - PA*) (3)

Changing the partial pressure into mass and -mole fractions . . .......

M
NAa ff KGaP jAA (YA -yA*) (4)

Combining equations 2 and 4

(1-e) pp RA = KGa PM (YA - YA*) = KGa pf RT (YA - YA*) (5)

Thus in the steady state, equations 1 and 5 become

Eu AYA + ka(yA-yA*) = 0 (6)dz

Separating variables and integrating assuming that YA* and eu are constant, we
obtain

1 YA2-YA*

ka = U (z2 - 21) (7)

By measuring YAj and YA2 and the superficial gas velocity U, ka can be
measured.

Correlation of the mass transfer coefficignt

For correlation purposes, the Colburn j-factor which has been successful in
correlations of mass transfer coefficients in packed and fluidized beds will be tried so
that

k
jD - (Sc) 2/3 = f(Re) (8)

It is reasonable to define

Re - <dp> (u-v)/i (9)

10



as the rate of mass transfer should be a function of the slip velocity.

The a term can be defined in terms of the average particle diameter as

6(1-e)
a = d (10)

Determination of the voidage and slip velocity

The - one dimensional steady state mass and momentum equations are (1) for ...
these fine particles

Eu = cl (11)

(I-) v = C2 (12)

pf = -8 "dz E d (u-v) - Ff (13)

d dP
PP z [(l'-)v 2 ] = " (1-E) !2- + 03 (u-v) - Fp - (1-c)(pp - pf)g (14)

where P = p + pf g z,F = 2f (pf U2/Dt) and Fp = 2 fp(l-E)pp v 2/Dt.

Combining equations 13 and 14 gives the mixture momentum equation

Pf Jz (eu 2) + Pp d- [(1c-)v 2 ] = - d- Ff - Fp - (l-e)(pp - pf)g (15)

In the non-accelerating region of the pipe the inertial terms drop out so that

dPdz = (l-e)(pp-pf)g + Ff+ Fp (16)

To calculate the voidage, equation 16 is rearranged to

dP
- Ff- Fp
_ dz 

(7(I-c) = (Pp - pf) g (17)

The slip velocity is easily calculated once the voidage is known using equations
11 and 12. Thus

u-v ] "-(18)
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To determine the voidage the pressure gradient in the non-accelerating region
is measured in our transport line apparatus (2). The friction factor for flow in a. tube
without particles is then obtained from Byrd et al. (3) and Ff calculated. Fp is difficult
to determine as literature correlations give vastly different estimates of the particle-
wall friction factor but it is reasonable to assume in dilute phase flow this term
cannot be large. As a first approximation we will neglect it. c2 is obtained by

-collecting the particles passing through the transport line per unit time and cl is the
measured superficial gas velocity in the line.

Once e is calculated from equation 17, the slip velocity is determined by

measuring the gas and particle mass flowrates in our transport line apparatus.

References

1. Capes, C.E. and K. Nakarnra, Can. J. Chem. Eng. 1973, 51, 31.

2. Littman, H., M. H. Morgan III, D. K. Prapas and G. 0. Rubel, An Automated
System for Measuring the Mass Flowrate of Powders in Transport Lines, CRDEC-
TN-013 Report January 1990. CRDEC Aberdeen, MD

3. Byrd, R.B., W.E. Stewart and E.N. Lightfoot, Transport Phenomena, J. Wiley, New
York, 1960.
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Nomenclature

a = surface area of particles/unit volume of bed, mn-

cl = superficial velocity of gas, m/s

C2 = superficial velocity of particles, m/s

D = diffusivity, m2 /s

Dt = pipe diameter, m
"ff = friction coefficient, fluid-wall
fp = friction coefficient, particle-wall

Ff = pressure gradient due to fluid-wall friction, Pa/m

=p pressure gradient due to particle-wall friction, Pa/m

g = gravitational acceleration, m/s 2

jD K (Sc) 2/3 = f(Re)

k = KoRT = mass transfer coefficient, m/s

Kra = overall mass transfer coefficient, kg moles A/m 3 , s, atm

MA molecular weight of component A

M = molecular weight of mixture gas

NA = rate of mass transfer, moles A transferred/surface area of particles, s

p = pressure, atm

PA = partial pressure of component A in gas, atm

PA* = partial pressure of component A in equilibrium with absorbed gas

on particulate aerosol, atm

P = modified pressure, atm

R = gas constant, liter atm/mole K
RA = reaction rate, kgm A/kg solids, S

Re = Reynolds number, <dp>(U-V)/v

Sc Schmidt number, v/D

t = time, s

T = absolute temperature, K

u = interstitial gas velocity, m/s
U = au = superficial velocity, m/s

v = particle velocity, m/s

YA = mass fraction of A in the gas, kgm A/kgm mixture

z = distance along transport line
= fluid-particle drag coefficient, kg/m 4

E = voidage
= kinematic viscosity

f = fluid density, kgm/m3

Pp = particle density, kgm/m 3
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PARTICLE FORMATION BY HOMOGENEOUS NUCLEATION
IN UNDEREXPANDED SONIC JETS

B. J. Jurcik and J. Brock
Chemical Engineering Department

University of Texas, Austin, Texas 78712

RECENT PUBLICATIONS, SUBMITTALS FOR PUBLICATION AND PRESENTATIONS
"Wave propagation from laser-induced plasmas in droplets" Proceedings of the 1990 CRDEC Scientific
Conference on Obscuration and Aerosol Research, CRDEC, U. S. Army, 1990 (with J. Carls)
"Aerosol jet etching", Aerosol Sci. Tech.,12,842-856 (1990) (with Y. L. Chen and I. Trachtenberg)
"A study of low pressure impaction processes" .J. Aerosol Science 20, 560,1989. (with B. Jurcik and I.
Trachtenberg)
"Laser-induced breakout and detonation waves in droplets: II. Model", J. Optical Soc. America B, In Press,
1990. (with J. C. Carls and Y. Seo)
"Distributions for moment simulation of aerosol evaporation", In Press Journal of Aerosol Science 1990
(with Y. Seo)
"Comparison between theory and experiment for laser-induced plasma and shock waves in droplets",
Proceedings of the 1989 CRDEC Scientific Conference on Obscuration and Aerosol Research, CRDEC, U.
S. Army, In Press,1990 (with J. Carls)
"Statistical properties of windows in atmospheric plumes", Proceedings of the 1990 CRDEC Scienfific
Conference on Obscuration and Aerosol Research, CRDEC, U. S. Army, In Press, 1990
"Alkane oligomerization and graphite fiber formation in an electrocatalytic system", Proceedings of the
1990 CRDEC Scientific Conference on Obscuration and Aerosol Research, CRDEC, U. S. Army, In Press,
1990
"Particle formation by homogeneous nucleation in expanding flows", Proceedings of the 1990 CRDEC
Scientific Conference on Obscuration and Aerosol Research, CRDEC, U. S. Army, In Press,1990 (with B.
J. Jurcik)
"A finite element solution of the Maxwell equations for absorption and scattering of electromagnetic
radiation by a sphere" Proceedings of the 1990 CRDEC Scientific Conference on Obscuration and Aerosol
Research, CRDEC, U. S. Armyln Press, 1990 (with L. Liebman)
"Aerosol jet etching of Hgl.xCdxTe", Applied Physics Letters 56 1682-1685(1990)(with B. J. Jurcik and
I. Trachtenberg)
Particle formation by homogeneous nucleation in expanding flows" Submitted for publication (1990) (with
B. J. Jurcik)
"Theory and experiment on laser assisted etching of silicon", In Press, AIChE Symposium Series, 1990.
"A new process for graphite fiber formation from alkane vapors", Submitted for publication, 1990.
"Wave propagation from laser-induced plasmas in droplets", Submitted for publication,!990.

ABSTRACT
A two dimensional simulation of particle formation by homogeneous nucleation in

expanding flows is described. An exact moment method is used to describe the particle
size distribution function. The model simulates the physical system of nucleation and
particle growth in underexpanded sonic velocity nitrogen jets. The calculations agree with
published experimental data well. It is shown that particle formation occurs initially off
axis. The average particle diameter can be either on axis or off axis depending on the
operating conditions.

INTRODUCTION

In expanding free jets the vapor undergoes an isentropic expansion which results in
a decrease in temperature, pressure and density. For most vapors, the saturation vapor
pressure decreases with temperature more rapidly than the pressure decreases in the
expansion, The vapor, therefore, approaches and crosses the saturation line and becomes
supersaturated during an expansion, if the isentrope crosses the saturation line and the
pressure drop in the expansion is large enough. If the cooling is rapid enough the gas or
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vapor becomes quite supersaturated before any vapor condenses and small clusters or
particles are formed by homogeneous nucleation. The reason the expansion does not
follow the equilibrium line is that the kinetics of homogeneous nucleation and condensation
are not rapid enough to m=intain equilibrium. The clusters formed in an expansion also
grow by a condensation mechanism. Figure I depicts this delay of condensation on a P - T
diagram for nitrogen showing the expansion path and corresponding locations in an
underexpanded sonic jet. The onset points are the conditions where condensation effects
are detectable. The wave diagram of an underexpanded sonic jet is also shown in this
Figure. For the sake of brevity, a description of the fluid dynamics of underexpanded jets
is not presented here and the reader is referred to Adamson and Nichols (1959), Ashkenas
and Sherman (1966), and Love et al. (1959).

The formation of aerosol particles in supersonic expansions has been the subject of
a great many investigations (e. g. the review article of Wegener and Wu, 1977). These
studies have used particle formation to study homogeneous nucleation (Abraham et al.,
1981), the structure of small clusters (e. g. Mark and Castleman, 1985), and the deposition

-of ionized- clusters (Takagi, 1986). Other practical applications that involve particle
formation in an expansion are a method of Uranium 235 enrichment (Fisher, 1979) and a
method for fueling fusion reactors (Moser, 1984). The formation of a condensed phase in
rocket nozzle exhausts (Crowe and Willoughby, 1967), and in the sampling of gas from
high pressure cylinders (Wen et al., 1987) occurs by the same mechanism but is an
undesired effect.

Despite the enormous literature on systems in which nonequilibrium nucleation and
condensation occur there have not been many attempts to model the flow field
simultaneously with the particle formation processes. With only a single exception
(Davydov, 1971) the analysis of nonequilibrium condensation has been one dimensional
(Koppenwallner and Danker, 1987). One-dimensional analysis fails to account for the two
dimensional shock structure that is inherent in supersonic jets. As a result one-dimensional
analysis can not show the effect of the large gradients that occur off axis. In this work a
two dimensional simulation of particle formation is described. First the model is described
and the numerical method for its solution is presented. Then results from the model are
presented.

Model Description

The expansions considered here are neither frozen nor equilibrium expansions.
The expansions are sufficiently rapid that heterogeneous nucleation is negligible and the
only mechanism for particle formation is homogeneous nucleation. Extremely large rates
of homogeneous nucleation can be found at high supersaturations which, in conjunction
with condensation, provides a mechanism for reaching the equilibrium line.

Obviously, the ability to simulate the expansion flows in which homogeneous
nucleation and condensation occur is limited by the accuracy of the expressions used for
nucleation and condensation. Stated succinctly, the expressions used are from the
classical theory of homogeneous nucleation, and transfer processes to a particle in the free
molecular regime (Hidy and Brock, 1970). The well known inaccuracies of classical
nucleation theory are accepted, primarily because there is no other viable option. The
expression used for homogeneous nucleation is:

Jnuc = "'Prv '(2I/xm1) exp(-AG/kT) (1)

The free energy change, AG, is given by the expression:
3G = (2)
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Where r* is the radius of a critical cluster' i. e. the size of cluster formed by homogeneous
nucleation. The critical cluster radius is given by:r* = 20vi

kT ln(Pvsp/Ps?) (3)

The rate at which mass condenses on a particle is given by the expression:
dm; va Psat (T)V
dt -Im T ,2m f (4)

In these simulations the aerosol size distribution is followed exactly through the first three
moments (McGraw and Saunders, 1984). The moments are defined in equations 5.

igo=X fi 9i1= rifi I9.l= sifi
i=2 i=2 i=2 (5)

In these equations fi is the number of particles with i molecules, a is the surface tension, ri
is the radius of a particle with i molecules, si is the surface area of a particle with i
molecules, and all other variables use standard notation.

Euler's equations are solved in conjunction with a conservation equation for go, gi,
9t2. The model of the jet uses the parabolized Navier - Stokes approach of marching in the
axial direction as a time variable (Dash and Thorpe, 1981). The flow field of the
underexpanded jet is mapped from the axis to the jet boundary. The boundary conditions
on the jet boundary are found using a method of characteristics approach. The axial flux
variables are solved for using MacCormick's method. The calculation starts at the nozzle
exit assuming no particles in the nozzle exit plane and assuming an isentropic expansion to
sonic velocity.

RESULTS

Dankert and Koppenwallner (1978) experimentally investigated nitrogen particle
formation in underexpanded jets. Here, we simulate the experimental conditions of
Dankert and Koppenwallner (1978). Figure 2 shows a calculated expansion path on the
centerline in which particles are formi •1 by nucleation and condensation. The
experimentally determined onset points are those temperatures and pressures at which the
effect of particles on the flow is observable. The conditions used for the model are Po = 3
ATM, To = 120K, D = 0.50cm, Poo = 0.01 Torr, Too = 120K. The physical properties
used for nitrogen are shown in Table 1. As can be seen from Figure 2 the model
determines the onset points correctly. The equation of state used for the gas phase is the
ideal gas law with a constant heat capacity ratio, y, equal to 1.4.

Prooerty Liquid phase [T > 63.14K] Solid phase 1T < 63.14K]

Vapor pressu.re [ATM] Ln(Ps) = 9.3996-723.47/T Ln(Ps) = 11.034-826.86/T

Density [gin/ra3J 0.8084 1.0265

Surface tension [dyne/cm] 0.22*(117.3 - T) 18.0
AHvap [erg/gm] 2.148x10 9  2.455x10 9

Table 1. Physical proFrties of nitrogen used in the condensing jet simulations.

The upstream stagnation conditions used by Dankert and Koppenwallner (1978)
encompassed a wide range of stagnation temperatures. In the simulations of these
conditions it was found that the upstream stagnation temperature, To had a large affect on
the particle distribution properties. This effect is shown in Figures 3a, 3b, and 4a, 4b.
Figure 3a and 3b show the average particle diameter in a condensing jet for a low To case
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and a high To case. Figures 4a and 4b show the particle concentration in a condensing jet
for the same low and high To's. The low To case uses the same conditions as in Figure 2,
while the high To case uses a To = 200K and all other conditions are the same as in Figure
2.

The average particle diameter for the low andhigh To profiles exhibited some
qualitative differences. The three dimensional profiles of average particle diameter are
shown in Figure 3a for the low To case and Figure 3b for the high To case. For the low
To jet the average diameter increased with radial distance from the axis, while the higher
To jet has the largest average diameter on the centerline. The reason for this qualitatively
different behavior is that as To is increased, nucleation and condensation are delayed until
lower temperatures and pressures. The condensation rate for higher To-jets is therefore -
lower and is not sufficiently rapid to adjust to the changes in the fluid properties. For the
higher To jet the largest condensation rate is found on the centerline where the largest
values of temperature, density and pressure are found (within the barrel shock). The
largest particles are therefore found on the axis for the higher To jet. For the lower To jet
the condensation rate is rapid enough throughout the flow field to aijust to the property
changes during the expansion. The main factor in determining the condensation rate in the
low To jet is the supersaturation ratio. The location where the lowest temperatures occur
(and therefore highest supersaturations) therefore exhibits the largest condensation rates.
As in the high To jet the largest temperatures are found on the axis (again, within the barrel
shock) so for the low 'r. jet the highest condensation rates are found off axis. The largest
particles in the lower To jet are therefore found off axis. To summarize, at the high To the
particle growth is limited by the collision rate because the driving force of condensation (i.
e. the supersaturation ratio) has no effect on the growth rate, while for the low To case the
flow is limited by the supersaturation ratio which determines the region of fastest growth.

The particle concentration profiles for the jets are shown in Figures 4a and 4b. The
same qualitative behavior is seen in these Figures, with large particle concentrations
beginning off axis downstream of the nozzle exit. The peak concentration for both
conditions is found off axis near the nozzle exit during the initial burst of nucleation. The
burst of nucleation is caused by the rapid cooling that occurs in the Prandtl-Meyer
expansion which causes the pressure on the jet boundary to equal P.. The rapid cooling
that occurs in the expansion causes the gas to be supersaturated off axis, so particles are
formed by homogeneous nucleation. The nucleation is delayed on the centerline because
the expansion is less rapid.
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ABSTRACT
Statistical properties of obscurant plume windows (an opening through an obscurant plume

through which a target can be acquired) are estimated from limited samples of Smoke Week II
data. In these samples, occurrence of windows is estimated to be a Poisson process. From the
same data,a frequency function is estimated for window size (length of time a window is open).
Acquisition of a target through a window is shown to be a renewal process. This permits
derivation of mean waiting time for target acquisition as a function of the length of time necessary
to acquire that target. Mean waiting time for a window as a measure of obscurant effectiveness
appears to have some advantages over the more common average measures, such as transmission.
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INTRODUCTION
Preliminary work on this problem was described at the recent 1990 .CRDEC

Scientific Conference on Obscuration and Aerosols. Apparent windows were analyzed from a
limited amount of Smoke Week II data. It was easily demonstrated that in two plume samples,
windows had, as might be expected for rare events, a Poisson frequency, as shown in Figs. I and
2.
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Figure 1. Demonstration of Poisson frequency for windows from SWIl data for fog oil plume at
0.6 gm radiation.
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Fig. 2. Demonstration of Poisson frequency for windows from SWII data for fog oil plume at
1.06 jgm radiation.

Fig. 3 shows estimate of window size distribution based on the same SWII data for 0.6 gm
radiation. This estimate is not believed to be very reliable.
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Fig. 3. Distribution of window sizes from SWII data at 0.6 pgm radiation.

With the frequencies of windows estimated in this manner and an estimate for distribution of
window size, it is possible to obtain an estimate of mean waiting time for a window of a given size
using well established principles in probability theory, known as renewal theory (Feller ,1950).
For an exponential distribution of window size , it is easy to calculate from renewal theory the
mean waiting time for a window as a function of time required for target acquisition, as indicated
by Fig. 4
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Fig. 4. Mean waiting time for a window as function of time necessary to acquire a target through
a fog oil obscurant plume.

It can be seen that there is a premium on target acquisition time, because statistically a long
time elapses before a sufficiently large window occurs in the obscurant plume, whereas small
windows, corresponding to small target acquisition times, arm relatively more frequent. We believe
that a stochastic puff model could be developed starting from the usual ideas in puff models (e.g.
Panofsky and Dutton, 1987). In this way a model could be constructed to give plume windows
that are related to meteorological variables. This would be preferable in our opinion to an approach
based on 2nd order closure models, whose application usually requires meteorological data, often
not available in field investigations.
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ABSTRACT
Characteristic filtration lengths of fibrous filters collecting spherical

submicrometer aerosol particles are calculated over a wide range of particle sizes
and filtration operating parameters. The calculations were based upon the
dispersion/reaction model for aerosol transport and filtration in porous filters,
and were performed for spatially periodic models of fibrous arrays of circular
cylinders in square arrays. Several orientations of the direction of mean air flow
relative to the lattice axes were investigated. A comparison between our
theoretical results, available experimental data, and the results of competitive
filtration models, demonstrated the greater accuracy of our dispersion/reaction
model in correlating characteristic filtration lengths of submicrometer particles
possessing diameters less than 0.3-0.5gm. The filtration rate of larger particles,
governed primarily by the interception mechanism, is shown to be sensitive to the
choice of the direction of the mean air flow relative to the axes of the periodic
array.
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The process of aerosol filtration in porous filters occurs when an inlet air
stream containing aerosol particles passes through the filter bed, depositing (a
portion of the) aerosol particles upon the surfaces of the collector elements, This
study is concerned with calculation of the filter efficiency

L-v-
-.. ...... .... : ... • .:: :

Pin .... .. .. ... Pout

Porous fibrous
S. . .. .. .. . .filter

Fiber Unitcell

collector2

Aerosol
particle

b).

Figure 1. Spatially periodic (lattice) microstruc~ire of a porous filter used in
calculations: (a) Superficial velocity V parallel to a principal lattice axis
("square array"); (b) Superficial velocity V inclined 450 to the principal
lattice axes ("staggered array").

11= 1 - PoudPin, (1)

which is defined in terms of the respective inlet and outlet aerosol particle
concentrations, Pin and Pout (see Fig. 1). This efficiency constitutes the main
parameter of engineering interest, and is dependent upon filter dimensions,
aerosol properties, and filtration operating parameters. Leers (1957) found that
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the filter efficiency decays exponentially with increasing filter length L (all other
things being equal), and thereby proposed the following semi-empirical formula:

l=l--exp (-L/I), (2)
wherein If (hereafter termed as the characteristic filtration length) is an L-
independent coefficient, possessing the dimensions of length. The physical and
engineering significance of this formula lies in the fact that it separates the effects
of the filter's external dimension L from its intrinsic aerosol collection
properties, embodied in If . The aerosol filtration length to depends upon the
microstructure of the filter, the filtration operating parameters, and the aerosol
particle size (Davies, 1973; Tardos et al., 1978). This particle size essentially
determines the physical mechanisms responsible for bringing aerosol particles to
the collector surfaces, where the particles are normally trapped and retained due
to the action of the short-range Van der Waals forces. Collection of fine
submicrometer-sized particles, namely those possessing diameters 2rp<0.3tm, is
governed by their Brownian diffusion towards collector surfaces. For larger
particles this mechanism acts in combination with the interception mechanism, the
latter being a purely geometric entrapment of those particles whose centers
approach the collector surface along fluid streamlines to within a distance equal
to the particle radius rp.

This research deals with determining the characteristic filtration lengths If of
fibrous filters collecting aerosol particles by diffusional and interceptional
mechanisms. This problem had earlier been treated (Stechkina and Fuchs, 1966;
Kirsch and Fuchs, 1968) by applying classical filtration theory (Pich, 1966),
which furnished the following formula:

If = a/rjc f(e), (3)

where 2a is the collector diameter and i1c is the so-called unit-bed efficiency -- an
essentially empirical quantity whose definition and evaluation hinge upon a chain
of ad hoc assumptions pertaining to the filter microstructure microscale flow
field, and aerosol concentration distribution prevailing within the bed; f(e) is a
function dependent upon the bed porosity e, the exact functional dependence
being a controversial issue. A more detailed and more carefully documented
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criticism of classical filtration theory appears elsewhere (Shapiro and Brenner,
1990).

Our dispersion/reaction model of aerosol filtration by porous filters
(Shapiro and Brenner, 1989; 1990) provides a precise scheme for demonstrating
the existence of the characteristic aerosol filtration length If as an intrinsic, L-
independent, physical quantity, as well as for computing it from the parameters
characterizing the - microscale problem. The model is based on a precise
physicomathematical formulation of the aerosol microtransport and deposition
processes throughout the entire filter bed (rather than within a single unit bed
element), which bed is assumed to possess a spatially-periodic (lattice) structure.
This scheme allows a precise calculation of the three Darcy-scale transport
coefficients, U'% D" and g1, without introducing any ad hoc assumptions, or using
the concept of single-element efficiency, such as is done in classical filtration
theory (Davies, 1973). These three coefficients are subsequently used to calculate
the total filtration efficiency 11, eschewing the ad hoc formula (3). In many
practically important cases (Shapiro and Brenner, 1990) the characteristic
filtration length is given by

i= (4)

where U* = iU*i is the aerosol's Darcy-scale mean speed and k* is the volumetric
aerosol deposition-rate coefficient.

Figure 1 schematically represents the microscale structure and geometry of a
model porous fibrous filter used in the dispersion/reaction model. Fibrous beds
composed of square and staggered arrays of cylinders were used in the
calculations. First, spatially periodic flow fields within these arrays were
calculated by the finite element technique. An extensive description of the flow
patterns thereby obtained, as well as the bed permeability data thereby derived,
are summarized by Edwards et al. (1990).

Next, the three Darcy-scale aerosol transport coefficients were calculated for
each array, which data were further used to evaluate the characteristic filtration
length If via Eq. (4). These calculations necessitated numerical solutions of
several eigenvalue problems formulated within a single unit cell of the spatially
periodic filter bed. A detailed description of the requisite computational scheme
is outlined by Shapiro and Brenner (1990).
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The Darcy-scale aerosol transport coefficients depend, inter alia, upon the
various microscale particle deposition mechanisms included in the model. Here, it
was assumed that particle collection is affected only by the Brownian motion and
interception mechanisms. As such, the Darcy-scale coefficients- and, hence, the -

concomitant characteristic filtration length are functionally dependent upon the
bed element P(clet number, Pe = 2Va/D, the interception parameter Rp=rpla,
and the bed porosity e (as well as the collector Reynolds number Re = 217a /v,
with v the air's kinematic viscosity).

The characteristic filtration length was found to increase with the increasing
bed porosity and P6clet number. The influence of the interception parameter is
shown in Fig. 2 for Pe= 10. Observe that £I decreases with increasing aerosol
particle size, thereby leading to an enhancement of the aerosol collection rate.
This effect is seen to be the most profound for highly porous filters, namely those
possessing the smallest solidities I-e. The relative influence of the interception
collection mechanism is found to be more pronounced for high, rather than low
PNclet numbers, corresponding to larger aerosol particles. This generally accords
with experimental observations, which reveal that with increasing aerosol particle
size the diffusion particle capture mechanism becomes less efficient. An extensive
investigation of the effects of various filtration parameters upon the aerosol
transport coefficients is presented by Shapiro et al. (1990).

Figure 3 compares the numerical If values derived from our
dispersion/reaction model with the semi-empirical model of Stechkina et al.
(1969), as well as with the experimental results of Lee and Liu (1977) obtained
for Dacron filters of l lgm diameter. For all calculations performed, the
characteristic filtration lengths calculated for the square array were larger than
for the staggered array, all other things being equal. For aerosol particles
possessing diameters 2rp<0.2gm, the experimental values of If lie between the
two curves calculated for the respective square and staggered array
configurations. In this submicrometer range of aerosol diameters the model of
Stechkina et al. (1969) yields much smaller values of If, thereby significantly
overestimating the aerosol filtration rate. For larger particles, where Brownian
diffusion effects are weaker, and hence for which the collection process is due
primarily to interception, our dispersion/reaction calculations for square arrays
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overestimate If. On the other hand, the model of Stechkina et al. (1969) still
yields smaller values of the characteristic filtration length in this range of particle
diameters.
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Figure 2. Dimensionless filtration length 1 vs filter bed solidity 1- e

t

In general, the agreement between the present dispersion/reaction results and
the experimental data was found to improve with the decreasing superficial air
stream velocity, as well as with increasing tortuousity of the intracellular flow
pattern (as embodied in the angle of the mean stream-velocity orientation of the
"staggered array"). It may be inferred that more elaborate geometric lattice
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models of the the filter bed (namely those containing several elements within a
single cell, and hence more closely approximating the porous beds encountered in
practice) would be expected to agree better with the experimental measurements.
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Theoretical Stechkina et al., 1969)

7j 1A Experimental (Lee and Liu, 1977)-v-

. = 0.849
2a= llgm

10
0.05 0.2 0.35 0.5

Particle diameter, 2rp (jim)

Figure 3. Characteristic filtration length vs particle diameter.

ACKNOWLEDGEMENTS

This work was supported by and the U.S. Army Research Office (Contract No.
DAAL03-87-K-0128). M. Shapiro acknowledges the support of the Basic
Research Foundation administered by the Israel Academy of Science and
Humanities

36



REFERENCES

Davies, C.N. Air Filtration. Academic Press, London (1973).
Edwards, D.A., Shapiro, M., Bar-Yoseph, P. and M. Shapira (1990). The effect

of Reynolds number upon the apparent permeability of spatially periodic
arrays of cylinders. Phys. Fluids A, 2 45-55.

Kirsch, A.A. and N.A. Fuchs (1966). Studies on fibrous aerosol filters -I ....

Diffusional deposition of aerosols in fibrous filters. Ann. Occup. Hyg. 11, 299-
304.

Lee, K.W. and B.Y.H. Liu (1982). Experimental study of aerosol filtration by
fibrous filters. Aerosol Sci. Technol. 1, 35-52.

Pich, J. (1966) Theory of aerosol filtration by fibrous and membrane filters, In
"Aerosol Science" (ed. by C.N. Davies), Academic, London, pp. 223-285.

Shapiro, M. and H. Brenner (1989). Dispersion and deposition of aerosol
particles in fibrous filters. J. Aerosol Sci., 20, 951-954.

Shapiro, M. and H. Brenner (1990). Dispersion/reaction model of aerosol
collection by porous filters. J. Aerosol Sci., 21, 97-125.

Shapiro, M., Kettner, I.J. and H. Brenner (1990). Coarse-scale transport
mechanics and collection of submicrometer aerosol particles in fibrous filters.
(In preparation).

Stechkina, I.B. and N.A. Fuchs (1966). Studies on fibrous aerosol filters - I.
Calculation of diffusional deposition of aerosol in fibrous filters. Ann. Occup.
Hyg. 9, 59-64.

Stechkina, I.B., Kirsch, A.A. and N.A. Fuchs (1969). Studies on fibrous filters -
IV. Calculation of aerosol deposition in model filters in the range of maximum
penetration. Ann. Occup. Hyg. 12, 1-8.

Tardos, G.I., Abuaf, N. and C. Gutfinger (1978). Dust filtration by granular bed
filters: theories and experiments. J. Air Poll. Contr. Assoc. 28, 354-361.

37



BLANK

38
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ABSTRACT

This paper describes new measurements of Vertical Integrated Concentrations
downwind from a neutrally buoyant, ground-level, steady point source in a
simulated neutrally stratified atmospheric boundary layer using a new improved
IR/CO system and summarizes findings of the CRDEC sponsored project entitled
"Experimental Study of Aerosol Plume Dynamics." The work is fully described in
C) listed above and in previous publications of the authors which are listed in
the references.

BACKGROUND

Obscuration of ground objects from elevated observers by plumes of aerosols
is related to the Vertical Integrated Concentration (VIC) of the aerosols along
the line of vision, which is defined as
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VIC (x,y,t) = C(xy,z,t) dz

The value of such integrals fluctuates with time and their statistical properties
are of considerable interest (Gifford, 1959; Hanna, 1984; Robins, 1978). A novel
Infrared/Carbon-Dioxide (IR/CO ) system for measuring the instantaneous value of
VIC in small scale models of pIumes diffusing in the atmospheric surface layer
has been developed (Poreh and Cermak, 1987, 1988 and 1989). Preliminary
measurements with the-first prototype of the system, -which had a relative high
noise-to-signal ratio and a slow response, were reported in Poreh and Cermak
(1987 and*1989). In a separate publication a two-coefficient semi-empirical
model, which describes the Probability Density Function (PDF) of VIC was
presented by Poreh, Hadad and Cermak (1989a and 1990). Recently, a new, fast
response, IR/CO2 system with a reduced noise level has been assembled. New
measurements of VIC were made using the new system at the Meteorological Wind
Tunnel at CSU (Poreh and Cermak, 1990a). A summary of the results is presented
below.

SUMMARY OF THE RESULTS

Figure I shows a typical time (T* - tU/6) variation of the dimensionless
parameter VIC - VIC S U/Q, where 8 is the thickness of the boundary layer, U is
the mean free velocity and Q is the strength of the CO source, at an off-center
location (y/o) downwind of the source. The fRgure Vemonstrates large
fluctuations and intermittency of VIC. The mean value of VIC , denoted by VICM ,
at that location was 0.99, whereas the rms of the fluctuations was vic" - 3.28.

Analysis of 120 runs showed that the lateral distribution of VICM* at each
x is Gaussian and can be described by VICM'(y) - VICM-(O)exp(-n 2/2), where

- y/o and o(x) is the rms of the lateral displacement of the aerosols. The
same Gaussian curve describes the distribution of the relative mean ground-level
concentrations C*. Figures 2 and 3 show the variation of a(x) and of VICM*(x,0)
verqus x/f. Figure 4 shows the distributions of the relative values of
vic '/VICM at different locations, which are also similar, namely this ratio is
a function of y/a and practically independent of the distance x. The
measurements of VIC were used to calcullte P(a) -- the probability that the
relative instantaneous value of VIC*/VICM exceeds a given ratio a. No attempt
was made to deduct the contribution of the noise to the value of P(a). Figure
5 shows the measured and calculated values of P(a) at different locations along
the centerline of the plume. The calculations are done using the model of Poreh
et al. (1990a). The values of the two coefficients iii the model were determined
using the above mentioned preliminary data. Figures 6 and 7 show the
distributions of P(a) at the edge of the plume. Again, an approximate similarity
is found, but the new data make it possible to observe a small effect of the
distance from the source particularly at y - 0. Figure 8 shows the effect of the
source height z on the distributions of P(a).

Analysis of the measurements show that the VIC fluctuations at different
locations downwind of the source exhibit an approximate similarity, in the sense
that dimensionless statistical variables based on the mean value of VIC at the
centerlirne of the plume at each distance, are functions of the dimensionless off-
center location y/a and only slightly dependent on the distance x.
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PLANNED FUTURE STUDIES

The IR/CO2 measurement system provides a unique means for acquisition of
VIC statistics of plumes generated by various source configurations for a wide
variety of atmospheric surface layer (ASL) types. As resources become available,
VIC data for steady and instantaneous sources in simulated ASLs for surfaces of
different roughness and thermal stratification will be acquired.

Development of an IR/CO system for measurement of concentration

fluctuations at a point is under consideration for future research.
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Summary:

A simple preparative scheme was determined whereby bacteria could be photographed
by optical microscopy in the same condition as they were prepared for light scattering
experiments. An extensive series of experiments was performed in which dimensions of several
representative bacteria were measured and compared with the oscillations of the polarized light
scattering p 'tern. Both length and diameters were found to be important, but the diameters
seem tr ;minate.

Intr 1," ,:

Last year we showed that changing the growth conditions for E. Coil bacteria led to
changes in the size distribution of the bacteria as measured by electron microscopy. These
changes correlated with changes in the angular scattering pattern for the combination of
Mueller Matrix elements indicated by [$34/$11]¥. (Here the nifty symbol after the fraction
indicates that we are actually measuring the combination (S34 + S14)/(S11 + S31) but the
elements surpressed In the symbol are relatively small for a randomly oriented suspension of
many particles.) The angular pattern oscillates with well defined maxima and minima. It was
seen that the effect of changing the particle size was analogous to the apparently much simpler
effect seen when light is diffracted through a slit, in that larger particles pjroduce more features
and more crowding of the original peaks into the forward direction.

We indicated last year that simple geometrical reasoning suggests that the scattered
photons should be more effected by the size of the diameter of the rod-like cells than their
length, since the former dimension is sampled many more times in a randomly oriented
suspension. However, the electron microscope measurements indicated that the size changes we
were observing in shifting from freely growing bacteria (log phase) to starving bacteria
(stationary phase) were mainly in the average length of the bacterial population with the
changes in diameter much smaller. An Intrinsic difficulty with such measurements is that a
great deal of shrinkage of cells occurs in preparing them for electron microscopy.

Because of the clear importance of the dimensions of the bacterial cells in determining
the scattering pattern for [S34/S1 1]V, we decided to determine the effectiveness of optical
microscopy for correlating bacterial dimensions with that scattering pattern. Further, once we
found this method to be practical, we embarked on an extensive series of these measurements in
which we utilized several different bacterial species and conditions of growth. The preliminary
analysis of some of these results is presented here.
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Methods:

It turned out that a rather simple procedure for preparing the various bacterial cells
gave quite raproducible results both for optical (phase contrast) microscopy and for scattering.
This consisted of spining the cells out of the growth medium in a table top centrifuge and
resuspending them in a .9% sterile NaCI solution at pH - 5.8. The concentration of the
suspension was set with an Optical Density at 600nm of 0.05 --0.1 and an appropriately
higher density for microscopy. Photographs were taken of various cells through the
microscope, projected on the walls and Individually measured against a calibrated standard. A
rather precise recipe is required for determining the condition of growth of ,he cells (eg. log
or stationary phase) in order to obtain reproducible size distributions. For log phase we
required more than five doublings at an O.D. < 0.05 while stationary phase was arbitrari!y
defined to be 18 hrs after growing through an O.D. of 0.5 after passing through log phase.
Further details on the methods will be given elsewhere (eg. refs (1,2))

Results:

Since we are using our microscopic measurements near the limits of resolution Imposed
by optics, it was important to test the resultswith an easily calibrated standard. We did this by
taking photographs of polystyrene beads, measuring about fifty of each size and comparing our
optical determination with the determination by electron microscopy (EM) supplied by the
company. For sets of beads which were sized by EM at 1.06 ± 0.01 and 0.6 ± 0.003 microns,
we obtained 1.03 ± 0.02 and 0.59 ± 0.01 microns where in our case the deviation stated is a
standard error of the mean. From these results and the consistency of the measurements
presented below, we judge that our microscopic resolution is at least statistically somewhat
better than 0.1 microns. Bacillus Megaterium is a spore forming bacterial species that is at
the large end of the size spectrum observed for commonly occuring bacteria. We utilized a non-
spore forming strain of these for our studies and illustrate the rather excellent quality of
photographs which may be obtained at least for these quite large "bugs" in Figure 1.

7---

"4 F

Figure 1. B. Megaterlum bacteria grown in LB medium and resuspended in saline for phase
contrast microscopy. The left hand photograph is of log phase cells with stationary phase cells
on the right.
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The log phase cells are slightly larger both In length and diameter as may be seen from the
tabulation of average dimensions for the various experiments given In Table 1 below. For this
tabulation, most of the chains of cells have been counted as single cells, making the average
length somewhat longer than would be the case If doubles Were counted as two single cells. .In..........
the case of Staphylococcus Epidermidis cells, which are fairly spherical In form, only one
"typical" diameter was measured per cell.

table I-
Optical Dimensions of Bacteria*

Bacteria Growth Stage Medium Diameter Length

E. Coil B/r Log Ml 0.77 ±0.11 2.72 ± 0.62

E. Coil B/r Stat Ml 0.60 ±0.08 1.61 ± 0.32

B. Subtilis Log LB 0.86 ±0.08 7.46 ±1.9

B. Subtilis Stat LB 0.78 ±0.09 3.5 ± 1.0

B. Megaterium Log LB 1.31 ±0.14 10.42 ±3.5

B. Megaterium Stat LB 1.41 ±0.14 9.02 ±3.9

S. Epidermidis Log M265 1.27 ±0.10

S. Epidermidis Stat M265 1.01 ±0.11 -

E. Coll K12 Log LB 1.15 ±0.11 7.40 ±3.7

E. Coll K12 Stat LB 0.97 ±0.10 1.93 ±0.34

*Notes:

Lengths are group length
Error Indicated Is standard deviation,
Two or three hundred cells were measured In each case during

at least two seperate experiments.

In each case a scattering experiment to measure [S341S1 1]V was performed on the same
afternoon and on the same cell preparation as the microscopy. All scattering for these
experiments was done with the 633 line of a He-Ne laser. As shown In the references to this
paper, an oscillating graph of [S34/S1 1 ]V vs angle showed clearly def ined maxima and minima.
Plots of the peak location vs the cell width are shown in Figure 2.
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Figure 2. Angles of maxima (+) and minima (-) from the function [834/S 1]¥ vs angle as a
function of average bacterial cell diameter.

Each vertical set of points in Figure 2 represents the extrema from a scattering
experiment with a cell type given by a line in Table 1. A given extremum traces a family of
points at decreasing angle as the average diameter Increases. The one anomolous set of points
(solid squares) corresponds to stationary phase Staphylococcus Epldermldis cells. Our present
results Indicate that diameters fit into such a scheme with more regularity than cell length. In
conclusion we note that additional data shows that the locations of the peaks for a given cell type
are reproducible to better than a degree of angle. This fact together with the data of Figure 2
indicates that changes less than 50nm in the average diameter of a bacterial population may be
rapidly and reliably detected in real time by this technique.
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Abstract

A computer based procedure to Invert the particle size and complex refractive
index from angular scattering measurements of spherical particles of a single size (or
nearly monodisperse narrow size distribution) is described. The procedure Is
Intended to be used to analyze data obtained by the CRDEC multichannel
nephelometers. The method Is derived from a deconvolution technique for
polydisperse spherical particles of known refractive index which was previously
developed by one of us under CRDEC sponsorship.

1.0 Introduction:

Recently the CRDEC has developed a capability to perform particle diagnostic
nephelometry experiments, using two different multichannel instruments. It is
desirable to develop a data analysis method to extract particle size and complex
refractive index informaticri from the data collected by these Instruments. Previously,
the nephelometry data have been analyzed by a variety of ad hoc techniques, but no
attempt has been made to solve the formal Inverse scattering problem.

We present here a restricted inverse scattering solution: determination of size
and complex refractive Index for single size spheres. Later extensions to nonspherical
particles can be contemplated by use of techniques similar to what is involved In the
inclusion of refractive indices as inversion parameters, provided one has access to
computed nonspherical scattering kernels for a variety of particle shapes.

Although the present method is Intended to invert single particle scattering data,
the actual data obtained In the nephelometers Is that of a nearly monodisperse particle
size distribution, because It Is necessary to add the scattering patterns for many nearly
identical particles, in order to obtain good statistics. Even If all the particles were
identical, variations In position as the particles traverse the laser beam would modify

51



the effective angular scattering pattern in the same way as slight variations in particle
size. Thus the inversion technique discussed here is really one which can deconvolve
a very narrow particle size distribution. The technique is intended to obtain the
average particle size and the peak width of the inverted narrow size distribution, as
well as the complex refractive indices of the average particle. In addition, the one-
standard deviation output imprecision values for the average size and refractive
Indices will be obtained, corresponding to input scattering data with known variances.

2.0 Background:

........- D During the 1980's-one of us enjoyed the -spon-sorship of the CRDEC in
developing and testing computer based methods to invert the particle size distribution
from laser scattering measurements. from an ensemble of spherical parlicles. One of
the ensemble deconvolution techniques developed during this period was denoted
the "constrained eigenfunction expansion method."' This technique, which is the fore-
runner of the present Inversion studies, involved expansion of the ensemble size
distribution in Schmidt - Hilbert eigenfunctions of the scattering kernels, as had been
previously done by Twomey and Howell2 and by Capps, et. al.3 The ensemble
expansion coefficients were determined by the input scattering data and by a trial
function through an implementation of the method of constrained linear inversion.4

Concern about the uniqueness of the recovered ensemble size distribution
functions led CRDEC to acquire two unique light scattering instruments known as
"multichannel nephelometers" that record the light scattering patterns produced by
individual aerosol particles traversing a laser beam. Each particle is viewed
simultaneously by PMT detectors positioned on a spherical surface surrounding the
particle/beam intersection point.' The present inversion procedure is meant to be
used with such instruments in the fashion shown in Figure 1. Initially, we are
concerned only with uniform spheres. If the technique gives reliable results for
spheres, than an attempt will be made to extend it to aspherical particles, beginning
with spheroids. In such cases, the particle aspect ratio will be one of the inversion
parameters, in addition to volumetric size and complex refractive indices.
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Figure 1 Illustration of Single Particle Inversion Procedure

3.0 Formalism:

The equation which describes light scattering by a single particle can be written
in the form ot a Fredholm equation, if the solution to the integral equation is regarded
as a Dirac delta function whose argument is unknown.

gi + ci = K(X,yi,ns,ks))2- Y. 6(r,s 5(x-X) K(x,yi,nr,k,)) dx (1)
r=1

where , is the unknown size parameter and ns,ks are the unknown complex refractive

index components, gi is the "ith" measurement, and -i is the error in the measurement.
While this equation is entirely correct for a monodispersion, it is also approximately
correct for the nearly monodisperse narrow size distributions characteristic of
anticipated nephelometry experiments. In practice, the product of delta functions will
be replaced by an approximate expansion which, in fact, imposes a finite width in size
and refractive index spaces. When solving this equation, n. and ks are assumed to be
members of the set of refractive index components for which the kernels have been
computed. Both the kernels and the measurements are assumed to represent
differential scattering cross sections which have been integrated over angles
subtended by the optical elements of the instrument. Note that the form of the above
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equation indicates that the particle size is assumed to be a continuous variable, and
the appropriate size distribution function is, thus, a Dirac delta function. In contrast, the
refractive index components are treated as discrete variables; hence, the appropriate
distribution function is a Kronecker delta whose argument specifies the index which
locates a given value of n or k in a set of preselected values corresponding to
precomputed scattering kernels. Since we are asking, in essence, for the probability

of finding (among all the possible particles) a particle which has the both the size x
and the complex refractive index pair (ns,ks), the appropriate probability distribution is
the product of the delta functions in the size and complex refractive Index spaces.

- The basis functions for the expansion of the delta function product are Schmidt -
Hilbert eigenfunctions of the generalized kernel covariance matrix, which is defined
below:

ij= f1 K(x,yi,nr,kr) K(x,yj,nfr,kr) dx (2)

Note that the kernel covariance matrix has been summed over all the refractive index
pairs which are included in the kernel computation set. The basis functions are
obtained from the individual kernels and the generalized kernel covariance matrix by
application of the Gram - Schmidt orthogonalization procedure. The result is a
generalization of the Schmidt transformation used in the ensemble deconvolution
procedure.

AN
<Pj(x,nr,kr-) -/A,/2 Y_, Uij K(x,yi,nr,kr) (3)

j=1

where Uij is an element of the matrix of eigenvectors of the generalized kernel

covariance matrix, Xi is an associated eigenvalue, and N is the total number of

measurements. These functions are orthonormal. In addition, one can generalize
sum rules for the expansion of a Dirac delta function in terms of a series of
eigenfunctions (such as the arguments presented in ArfkinO) to obtain an equivalent
expansion for the product of delta functions:

N

S(Li(X,lr,,k,) OPi(X,n,.,ks) = 8(x-,) 5(r,s) (4)
i= 1

Equation (4) would be an exact representation of the delta function product if the
number of eigenfunctions in the expansion were infinite. However, since the number
of eigenfunctions in this expansion is finite (according to Hilbert - Schmidt theory for an

54

mo



Fredholm equation with a degenerate symmetric kernel) and in fact is equal to the total
number of scattering Inputs, equation (4) gives, at best, an approximation to the delta
function product, which will have a finite spread in both size and refractive index
spaces. This is all right, since the actual scattering data will consist of a superposition
of the scattering patterns from many similar particles, as was previously stated. In
simulations using narrow lognormal ensemble distributions to approximate the delta
function, we have found that the finest resolution of the approximate Dirac delta
function which can be inverted In size space is two size increments. This means that
simulated scattering data corresponding to a polydispersion whose width was two of
the computational size increments used to compute the kernels could be deconvolved,
but a narrower size distribution could not be deconvolved.

The remainder of the formalism follows the treatment of the ensemble size
distribution deconvolution procedure. The product of delta functions is first expanded
in a series resembling equation (4), but the expansion coefficients contain the effect of
the experimental data and of the trial functions for size and refractive indices.

N
8(rs) 8(x-x) = 1_ Cj (z.,,k,) Oj (xr,.kr) (5)

j=1

In equation (5), the expansion coefficients are stated as functions of the unknown size

c and refractive index pair (ns,ks). If these were known, the expansion coefficients

Cj(x,n,,k,) would simply be 'j(x,n,,kj). Instead, these coefficients are found by the

method of constrained linear inversion to be

A Uj'k gk. +- t',(xr, n.", kT)

S= k=1" A.2 (6)
1+-Aj

where y is a Lagrange multiplier and xT, 'IT, kT are trial values of x, n, k. Equation (6)
provides an approximation to Oj(z,n,,k8 ) which should become progressively better

as the iteration process proceeds. Once the solution expansion coefficients have
been obtained, the inversion parameters are obtained as moments of the delta
function distribution.
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The recovered size parameter is obtained from

N N• , C i x O j (x~n,.t,) dr. .. ... ..... . .. . ... .. _72 _,

xS= Atoin. (7)
Ano~,rm

where Anorm is a normalization factor defined as

N N,
Anorm= I i C i (x ,n r ,kr)dX

Clearly, the iteration process should drive the recovered size to x.- x. Similarly, the

complex refractive index pair is obtained from

NN,
SI (n,, kr) C1 x Oi (x,nr,kr) dx

(n,, k,) r=l (8)N N, .

1 71 cifw x4Ps(x,nr,kr)dxi=1 rol

We have also obtained equations for the uncertainties on the recovered
parameters xs, ns, and k. due to one standard deviation imprecision levels of the
scattering input data, assuming Gaussian distributed random errors in the data. These
are analogous to similar expressions in Curry' , but are not stated here, on account of
space limitations.

4.0 Concluding Remarks:

This paper has presented the formalism for a computer based inversion
technique to obtain the particle size and complex refrautive indices from light
scattering data obtained in a multichannel nephelometer. At this writing, the technique
has been implemented in a triply iterative fashion. The first iteration uses an assumed
size and pair of refractive index components and increases the Lagrange multiplier y
shown In equation (6) until an optimum value is found, as described in Curry'. The
second iteration involves substituting the old solution expansion coefficients for the
trial functions (the eigenfunctions in equation (6)) and repeating the first iteration.
Recently, this procedure was extended for the ensemble deconvolution procedure to
include fitting the recovered ensemble size distribution to a parametric distribution
function and using the fitted results as a new trial ensemble distribution function, thus
yielding a triply nested iteratlon. A similar process is invoked for the single particle
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Inversion procedure. Upon convergence of the first two nested Iterations, the size
parameter and the refractive index pair are computed from equations (7) and (8) and
compared with the trial values. If convergence is not obtained at this stage, trial
parameters closest to these three parameters (within the computation set for which
kernels are available) are selected and the entire process is repeated until
convergence occurs. In preliminary tests we have obtained convergence on size, but
recovery of the refractive index components will probably require extending the last
stage of iteration to incorporate separate convergence on the size and refractive Index
components.
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ABSTRACT

The bacterium Aquaspirillum magnetotacticum grows its own
internal single domain magnets. For a number of reasons,.
these magnets make the bacterium an extremely interesting
scattering particle. We are engaging in light scattering and
birefringence studies on Aquaspirilllum magnetotacticum.

-INTRODUCTION

The bacterium Aquaspirillum magnetotacticum has the

interesting property that it grows its own internal, single

domain magnetite (Fe 3 0 4 ) particles. 1- 5 These internal

miniature magnets give each bacterial cell a magnetic dipole

moment parallel to the axis of motility. The bacteria thus

orient and swim along the direction of the earth's magnetic

field lines.

A. magnetotacticum is a slightly helically-shaped

bacterium. Its internal magnetite particles are usually

cuboidal in shape and approximately 50 nm in size. 3 The

average number of particles per bacterium can vary between 0

and 40, depending on the age and growth conditions of the

culture. Because the magnetite particles within a given cell

interact magnetically, they tend to line up inside the

bacterium in a single row. These chains of magnetite are

slightly helical in form due to the helical shape of the

bacterial cell.
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MAGNETIC BACTERIA AS SCATTERING PARTICLES

There are a number of reasons why A. magnetotacticum is an

interesting particle for light scattering studies:

4-... - - - -• - --

1. The scattering particles (bacteria) can be-prepared-in . -

large quantities.

2. A. magnetotacticum is a highly non-trivial scattering

particle. Specifically, the cell has an unusual degree of

internal structure. The average refractive index for most

non-sporulated bacterial cells is approximately 1.38--very

close to the value of 1.33 for water in the surrounding

medium. A. magnetotacticum, however, contains magnetite

particles with a large refractive index of 2.42. We thus

expect the internal magnetite particles to dominate the

scattering. This is in contrast to most biological cells

where the exterior cell wall or membrane may be expected to

dominate.

3. The bacterial orientation can be accurately measured and

controlled. A strong external magnetic field can be used to

give the bacterial cells any desired orientation for light

scattering studies. It is thus possible to measure

scattering by a collection of nearly identical, highly

oriented particles in suspension. This avoids the

experimental difficulties associated with scattering from a

single oriented particle.
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4. Multiple scattering is a factor in real-world scattering

phenomena. Theoretically, however, multiple scattering is

relatively intractable. With dense, oriented suspensions of

magnetic bacteria it may be possible to compare multiple

scattering models with experiment, without having the addi-

tional complicating factor of random particle orientation.

5. A. magnetotacticum should have significant form chirality

due to the slight helical shape of the chain of magnetite

particles within each cell. This makes the bacteria

interesting for measurements of several of the Mueller

scattering matrix elements, especially S1 4 .

6. Oriented magnetic bacteria can be used to study

rotational diffusion coefficients 4 and fluctuations in Mueller

scattering matrix elements.

7. A. magnetotacticum bacteria not only can be given any

desired orientation, they can also be made to swim together

in any desired direction. This offers the interesting

possibility of using A. magnetotacticum as a kind of

calibration particle for autocorrelation spectroscopy

(dynamic light scattering).

8. A. magnetotacticum is fascinating in its own right. The

ability to synthesize magnetite is of keen interest for

fundamental reasons, as well as for the potential

technological and environmental applications. 1-5
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THEORY'OF SAMPLE BIREFRINGENCE

The degree of orientation for magnetic bacteria can be

determined from measurements of the sample birefringence. 3

Birefringence is a difference in refractive index, An, for

vertically polarized light compared with horizontally

polarized light.

Let J be the a magnetic dipole moment for a single

bacterium and H be the externally applied magnetic field.

Now the birefringence of a suspension of bacteria is 3

An = Ano <P 2(cosO)> (1)

where <P2(cosO)> - <3coso/2 - 1/2> is the expectation value

for the second Legendre polynomial, f is the orientation

angle, and An 0 is the birefringence saturation value for

large values of H. If a g6H/kBT where T is temperature, and

kB is Boltzmann's constant, we can rewrite Equation (1) as 3

An = An0 (3 coth(a) +-3)
aX2 (2)

By measuring the birefringence ratio, An/An 0 , as a function

of H, it is thus possible to determine the average magnetic

moment, g. Equations (1) and (2) assume there is no magnetic

interaction between the bacteria and they also ignore any

randomization of bacterial orientation due to cell motility. 3
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THEORY OF LIGHT SCATTERING

When a sample elastically scatters light, the Stokes.

parameters for the scattered light are related to the Stokes

parameters for the incident light by 9

-----------......... .....- I-(Is/ . .. ... ,sni s8 -2 .S13-s141 -II\ .. .... .... ..-.. .... -- . .. -

QS• -k 2rS 521 S22 S23 S24 |QiiUs) ( S31S32 S33.SM) S Ui) . . .

Vs/ S41 S42 S43 S44 Vii (3)

where Shj is the hj element of the Mueller scattering

matrix, the subscript i or s refers to incident or scattered

light, k=2n/X, X is wavelength, and r is the distance to the

photodetector. In general, Shj is a function of scattering

angle 9. The off-diagonal matrix elements, especially S14

and S34, are of particular interest. 9 They give the polar-

ization properties of the scatterers and depend strongly on

particle size, morphology, chirality, and optical constants.

EXPERIMENTAL METHODS AND RESULTS

We constructed a Helmholtz coil box for generating

magnetic fields in 3 orthogonal directions simultaneously.
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This can be used to cancel the earth's magnetic field and

generate any desired additional H vector. When the sample is

placed inside the box, we can thereby give the bacteria any .......

desired orientation. Slots were cut into the Helmholtz box

to allow light transmitted and scattered by the bacterial

K sample to exit the box..

The magnetic field inside the Helmholtz kboxwas__measured ...........

with a 3-axis magnetometer (Applied Physics Systems). The

-.. --. field -strength could be measured simultaneously along 3 .. ...

orthogonal axes with a resolution of 1 micro-Oersted (1 gOe).

The sample birefringence was measured using a Zeeman

effect laser. This interferometric technique is discussed in

detail in references 6-9.

Figure 1 shows typical birefringence data for our Zeeman

laser measurements of birefringence as a function of magnetic

field strength. From these types of measurements, we found

the average magnetic moment of our bacterial cells to be g -

3.7 X 10-13 emu. The value of g varies by ± 50% depending on

the culture age and growth conditions. This value for A is

in fairly good agreement with measurements made by others

workers using dissimilar techniques: 1.2 X 10-13 emu in

reference 3, (2.6 ± 1.7) X 10- 1 3 emu in reference 4, and 2.2

X 10-13 to 5.0 X 10-13 emu in reference 5.

Figure 2 is a schematic of the experimental set-up, as

viewed from above; for making scattered irradiance

measurements on suspensions of the magnetic bacteria. The

scattering plane was horizontal. The polarizer (POL) "wa-

used to choose the incident polarization--horizontal or
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Figure 2. A SCHEMATIC OF THE APPARATUS USED TO MEASURE SCATIERING
FROM ORIENTED MMIC BACTERIA. The light source (LASER) was an
argon-ion laser operated at a wavelength of 515 nm. A beam splitter
(BS) allows a reference photodiode (PD) to monitor the laser intensity
and correct for any fluctuations in the laser power. The sample of
magnetic bacteria was placed inside the HEMEHLTZ BOX. The bacteria
could be given any orientation by adjusting the strength of the mag-
netic fields in each of 3 orthogonal directions. P1 and P2 are pin
holes used to define the scattering volume. A photcaultiplier tube
(WMT) collected the scattered light as a function of scattering
ange (theta). For S14 or S34 measurements, a single photoelastic
modulator must be added.
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vertical.

Figures 3 and 4 show experimental scattering data for

vertical (a) and horizontal (p) incident polarizations,

respectively. Sxx is plotted as a function of scattering

angle where Sxx - S11 ± S12. The 4 different orientations are:

450 in SP - the bacterial optic axis is in the horizontal

scattering plane and oriented- atO - 450,

900 in SP - the bacterial optic axis is in the horizontal
scattering plane and oriented at 0 - 900,

450 in PP - the bacterial optic axis is in the vertical
(perpendicular) plane and oriented at 450 to the vertical,
90* in PP - the bacterial optic axis is -vertical.

The variation in scattered intensity shown in figures 3

and 4 for suspensions with different bacteria orientations

can be understood by considering the total bacterial cell

geometric cross-section viewed by the incident laser beam and

the incident polarization is or p).

The curves in figures 3 and 4 are spline fits to the

experimental points. Data points aroundO - 1250 and 9 - 500

are missing because the corners of the Helmholtz box block

the scattered light at those angles. Additional measurements

(not shown) made with a rotated Helmholtz box indicate there

is no significant fine structure in the scattering curves

around those scattering angles.

For measurements of S14 and S34, it is necessary to add a

single photoelastic modulator 9 to the set-up shown in figure

2. These measurements are still in progress.
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ABSTRACT

This paper extracts some topics from the joint work with Prof. H.C. van de Hulst of the

Leiden Observatory, the Netherlands (papers B) and C) shown above), and add a few which may

be useful in particle characterization. Rainbow seen at a large distance, and at a finite distance with

Ak= are discussed with the aid of graphs. For the former the classical Airy theory, which we
generalized to rainbows of arbitrary order, was found very useful even for smaller particles than

were previously thought. For the latter a royal road to Mie theory calculation has to be taken, and

we performed the Fourier transform of Mie field over the lens aperture. A few such Mie glare
point images, nicely in accord with the classical geometrical optics, are shown. This article deals

with single particles only. But a further step on scattering by size-distributed particles has already

been taken, aiming toward inverse problems. Extension to a more elusive phenomenon, the

backscatter glory, is also planned.
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1. Introduction

Rainbows are ubiquitous phenomena resulting from the play of light in transparent

spherical drops whose size is very large compared to the wavelength. The beauty of the display by
water drops in the atmosphere following a rainfall is so familiar to us, and has inspired analytical
studies over 7 centuries. We can only cite a few recent literature [Refs. 3-5, 7- 1] and discuss. . ...

here only a few practical topics related to characterizing a particle.

We first remark that the same rainbow phenomenon gives different appearances depending
-on whether (1) we see the collective effect at a large distance from a number of contributing drops, -
or (2) we see at a finite distance from a single drop mdtb.ailnz focused on the drop surface. The
familiar colored circular arcs we see around the anti-solar direction for atmospheric rainbows
constitute a good example of case (1). For case (2), we see instead a few brighter or fainter glare
spots, often colored, whose positions change in the field of view as the lens' angular position is
varied [Refs. 7,10,11]. If, however, only a detector withoUt lens is employed, as in many light-

scattering experiments, the detector registers only the integrated scattered light over its aperture and
the glare spots are not seen.

The time-honored Lorenz-Mie theory [Refs. 2,6,9] renders detailed explanation of such

phenomena, but its numerical evaluation is rather time-consuming even by a computer with an
efficient computational algorithm [Ref. 12], especially when the drop size parameter

x = 2n a/X (1.1)

is large. Here 2a denotes the drop diameter, and X, the wavelength. Through extensive

comparisons with the Mie results, however, we found the classical Airy approximation, which we

generalized to rainbows of arbitrary order p-I (p-l=number of internal reflections), was very
useful in particle characterization under the case (1) and part of case (2). Section 2 summarizes

some useful Airy formulae, depicts a few Mie-Airy rainbow profile comparisons, and explains the
use in particle characterization. Section 3 deals with the glare points under case (2) and discuss
their interprctation. Lx.. 4 givc.. 01he 6-mmary.

2. Particle characterization via the Airy's Theory of Rainbows
This classical theory of rainbow precedeed the Lorenz-Mie theory by more than half a

century [Ref. 1]. Applying the Huygens' diffraction theory on the cubic wavefront formed by
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emerging rainbow rays from a drop, it successfully approximated the positions and intensities of

the main rainbow (P=2) and its supernumerary bows. This was then a significant improvement

over the famous Descartes' theory of rainbow based on the geometrical optics (G.O.). Airy

approximation has been widely discussed, employed, and even modified in several forms in many

rainbow articles to this date. Contrary to what has often been thought, however, our extensive
comparison with Mie results shows the Airy approximation starts to be useful at a relatively small

drop size x where laboratory levitation of the particle is also feasible. The lower bound for x
appears to go even lower as the refractive index m increases, as long as the 1st primary rainbow
(p= 2) peak is of interest. Since the Airy-Mie comparison was made both on the angular position
and the absolute-magnitude of intensity, our finding could also be stated as: Aiy theoy can be
employed for the quick absoluLe-magnitude calibration of intensity in a light scattering experiment.
by measuring the primary rainbow.

After the above brief outline we list a few useful Airy formulae as extracted from [Ref. 12]

which are also valid for rainbows of arbitrary order. Notations by van de Hulst [Ref. 9] and also
by Humphreys [Ref. 5] are employed.

(A) Scattering angle positions (in radians) of Airy maxima/minima
First Airy maximum (K=0):

01uax.0 = 00(p,m) - q 9 1.087376 [hn 2/12] 1/x 2 3  (2.1)

Supernumerary Airy maxima (KŽ I):

emaxK= 00(pm) - qh1/3 [31c(Y#-1/4)/2] 2/ x72/3 (2.2)

All Airy minima (KIŽO):
0ran, - 00P~)-qh [3g(K0-3/4)/2]eminK = 00(pm) - 1/3 [2/3 X2/3  

(2.3)

where 00(p,m) is the rainbow angle by geometrical optics [Ref. 9, p.229] and

q =--1 if 0o(P,m) is a minimum deviation angle (e.g. p=2, 5, 6, 9, etc) (2.4)

q = +1 if 0o(p,m) is a maximum deviation angle (e~g, p=3, 4, 7, 8, etc)

h - I (p2 - 1)2 / (p2(m2 - 1))] * [(p2 -m 2) / (m2 - 1)]1/2 (2.5)

h is related to the curvature of cubic wavefront [Ref. 5, p.470].
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(B) Scattering intensity (S ll)Airy for unpolarized incident light

_ _1f 1 / 6

(S i)A.n (e-+c.){81/(1672h4)} cos cp x7 3 f2(z) / sin 9o(p,m) (2.6)

- .,ry1 / 2 /

fRZ) = cos [79(zt.- t3 2] dt u Airy integral

z (.q)[12/(hn2)]" 3 x2 /3 (0- _ 0(p,m))

(2.7)

= tae [(m 2_ 1)/ (p2 m 2).. 

. .

E (1- )(-r p-1 where i=l or 2 and p t2

% Fresnel's reflection coefficient for polarization i (Ref.9, p204)

Unlike the time-consuming Mie scattering calculation whose computer CPU time increases
linearly with x and the number of scattering angles, the evaluation of Airy intensity, (2.6), is
practically independent of the drop size x, thus making it a very efficient. tool in laboratory use.
Figs. I and 2 show the direct Mie-Airy rainbow profile comparisons with x fixed at x=241.661
and x=120.83, respectively, and with 4 typical refractive indexes. Both Mie and Airy theory
calculations were made by our laboratory-oriented DECLAB PDP1 1/23 computer, using only 7-
digits single-precision arithmetics. The respective drop sizes are 2a=36.5pmn (Fig. IA), 2a=f50 im
(Fig. IB), 2a=52.2 gim (Fig. IC) and 2a=38.5 gm (Fig. ID); while in the corresponding Figs.

2A-2D, all the drop sizes are halved. The selected particles are thus typical for those employed in
light scattering experiments for their manageable levitation. We cannot reproduce here a far greater
number of Mie-Airy comparison graphs covering the drop size. to 2a-6.2 num, but we found as x
increased the Mie/Airy rainbow profiles matched progressively better. Indeed, at 2a-0.4 mm the
match already came to almost exact for water drops, as long as only the rainbow peak positions

and intensities were concerned.
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We summarize a few interesting findings through Figs. 1 and 2: (a) The angular positions

of rainbows depend most critically on the refractive index m and the number of internal -reflections

p-I (p=2 : primary rainbow; p=3: secondary rainbow; etc.), but to a lesser degree also on the size

x. (b) Eq. (2.1) can be employed to isan the primary (p=2) rainbow peak position for quick

particle characterization. (c) For the p=2 first peak, Mie and Airy theories agree rather well both in

- -- position and intensity, even for such small drop sizes.. The agreement improves as the refractive .. -,

-index m and/or the size x increases, which is also accompanied-by the increase in intensity but . .. --

decrease in width of this main peak, i.e., the primary rainbow becomes more and more prominent.

S ....-Thus, analyzing the primary rainbow-profile via Airy theory will be a feasible approach to .- -

characterizing a particle. (d) Whenever we go to the supernumeraries for p=2 or to rainbows of

higher order (p2 3 ), the agreement between Mie and Airy theories becomes less impressive or is
virtually lost at the drop sizes of Figs. 1 and 2.

3. Mie Glare Point Images

In sec. 2 we assumed that both the small light source and observation aperture were located
very far from the scattering particle. We now turn into the problem of imaging a particle Ritau

11m located at a finite distance r from it, over various angular positions of 0 (Fig. 3 illustrates the
geometry). This corresponds to the case (2) in sec. 1. Since the lens subtends an appreciable half
angle b/r with respect to the particle, the interferences between all rays over the lens aperture have
to be assessed. This will result in brightness variation over the particle image formed on the plane
Q of Fig. 3. We shall see such an image contains several glare..oints, the images of the exit points
of those rays strongly reflected or refracted into the observing direction. The calculation requires
the Mie theory for integrating the contributions of wavelets across the lens aperture. This is the
direct application of the Huygens' diffraction principle, and we call it the Fourier transform of Mie
field.

For simplicity the incident light is assumed polarized perpendicular to the scattering plane,

and we further assume r is large enough so that the complex scattering amplitude before entering

the lens is given by [Refs. 2,6,9]

nmaxt

S1 (O) = Z 2n+l {anlcn(cos 0) + bn 'rn (COS 0) 
(3

n( I n(n+l) (3.1)
n=1

The amplitude of the received field at Q can then be derived and is proportional to [Refs. 7,10]
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0.s-b/r •

"AIM S"1(0) exp Pxw(0 0)]dO- (3.2)

- - -- where 00 is the angular position of the lens center, and w denotes the dimensionless image . -

-.... position, w=+l corresponding to the image position of one particle edge, while w=-1, to the

opposite edge.

We first remark that a glare point is noLn agil• be the image of a particular order

rainbow. Whenever the intensity of light rays is vy= much strengthened at an exit point of the

particle surface, that point is focused by the lens to produce a glare point image. Besides rainbow-

forming rays, others such as directly reflected rays (pfO) or those emerging after transmission

and/or internal reflections (pal) can also be responsible for it. In the x-**oe geometrical optics

limit, one can construct a map (Fig.' 4) showing for each p the image position w as a function of

the lens position 00 [cf also Ref. 9, p.229]. Such a map is convenient in identifying the rays

producing a given glare point image for a very large particle. It is very sensitive to the refractive
index m of the particle. Fig. 4 is for m=1.331, that of water at W0.65 gim, and shows for p from

p=O to p=6.

'We next state an important remark that such a glare point experiment can be performed only
when x is very large, for the resolution criterion deduced from a fundamental diffraction
consideration [Ref. 10]

AO00 Aw ~I
0 x (3.3)

This means we cannot simultaneously measure with infinite precision the angular position 00 and

the image position w. Choosing a big lens helps define w but spoils the accuracy of 0 0. Choosing

a small lens does the opposite effect. For this reason we chose here a water drop of x=10,000 or
x=20,000 at X=0.65 gtm with b/r=0.01, corresponding to, say, placing a b=l cm lens at a distance

of r=100 cm.

Fig. 5 shows the Mie glare point image for the test sample x=10,000, m=1.331 - 11.3 E-8

and b/r=0.01. Log IAI(w)l from eq. (3.2) was plotted against w over -1.25•w<1.25, which cover
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a little beyond both geometrical optics image boundaries w=-±1 in order to see also the spill-
overs/surface-waves, if any, occurring at the particle edges, near which most rainbows are also
produced. Fig. 4 was very useful in tracing the sources of rays responsible for the glare points,
the positions, heights and widths of which are very sensitive to particle parameters (and also to

b/r). Thus, the glare point imaging technique would be very important not only for particle
characterization, but also for understanding the basic physics of light interacting with a large

particle.

A glare point image is accompanied by many diffraction side lobes of the lens spaced
uniformly on both sides, as can be seen in Fig. 5 at each prominent peak. Similar phenomenon is
also experienced by an optical astronomer as nuisance when he finds his faint star image is ringed.
He then aodizjs the lens to suppress the unwanted sidelobes at the cost of a slight widening and
decrease in intensity of the main peak, by coating the lens with an absorbing material whose
thickness increases as one goes toward the lens limb. Similar techniques can be applied to a
microwave antenna, a process known as taperg. Fig. 6 shows some examples by using the
apodization factors:

g(z) = 1- (90z)2

g(z) = cos2 (l lOz) (3.4)

g(z) = exp [-(140z) 2]

where z is proportional to the distance of a point on the aperture from its center, taking the value b/r
at its edge. These multiplication factors are then placed in the integrand of eq. (3.2) to perform the
Fourier transform. In Fig. 6 we employed x=20,000, m=1.331 - i 1.3E-8 and b/r=O.01. The lens

position is at 00 = 127.610, the p=6 Airy rainbow angle evaluated by eq. (2.1). As seen, besides

the p=6 rainbow itself many faint glare peaks become more discemable by increasing the degree of
apodization. A large number of similar graphs has been compiled to study also the edge
phenomena, where most rainbows also take place.

4. Summary

Rainbows, either seen at a large distance (case (1)), or at a finite distance With alns (case
(2)), can be explained in detail through the Lorenz-Mie theory.
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For the case (1), the classical Airy approximation was found more useful than had often

been thought. For m > 1.4, for example, the Airy.theory can be employed to analyze the

S_ ......... primary rainbow (p=2) for particles as small as 2a"-0.02 mm. The Mie-Airy rainbow .......

profiles match better for the p=2 rainbow as m and/or x increases.

* The numerical evaluation of Airy theory is much less time-consuming than Mie calculation.

_ Thus the Airy theory may be employed for absoluttemaenitud calibration in light scattering -

-- - -- experiments, by analyzing the primary rainbow.
'- ..... .- .-The glare point images pack a lot of more"information than merely observing rainbows at a

distance, for they contain detailed pictures on the behavior of light rays inside the scattering

-........ particle. There would be many interesting problems for which the glare point imaging

technique prove to be a powerful tool, including tie particle characterization.
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ABSTRACT

It is proposed to apply the techniques of statistical decision theory to
the problem of inverting scattering information from a single scatterer
to determine if the scatterer has a shell-like structure. We shall start
with a spherical scatterer with an index of refraction varying from 1.33
to 1.55. and compare it with a spherical core of 1.33 surrounded by a
shell of index 1.55. We assume that the outer radius of the sphere isfixed at 2.5 microns, and the inner radius (when present) can vary

from 1.76 to 2.2 microns.
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1. Decision Problem
From a set of experimental light scattering data by a spherical scatterer, we wish to

make a decision concerning the nature of the scatterer. We assume, initially, that the
structure of the scatterer is restricted to be one of the following two cases. In case
(hypothesis) 1, the scatterer is assumed to be a uniform sphere with radius 2.5 microns and
a refraction index between from 1.33 to 1.55. In the case (hypothesis) 2, the scatterer is a
layered sphere with varying inner radius from 1.76 to 2.2 microns and a core index 1.33
and shell index 1.55, the outer radius is assumed to be the same as the case 1. The wave
length of the light is assumed to be .4416 microns. We need to decide which case it is
with minimum probability of an incorrect guess. (Case 1 is a uniform sphere with a per-
mitted range of index of refraction. Case2 is a layered sphere with a permissible range of
inner radii. In both cases, in this note, the outer radius is fixed.)

The method of examining the experimental data to decide between these two cases
(called hypotheses by statisticians) is a classical problem in decision theory solved by Ney-
man and Pearson in 19331. The results are expressed in terms of "maximum likelihood
ratios". An excellent overview is given by Kendall and Stuart2-. A readable description of
the Bayes theorem approach to the same problem is given by van Trees3. The close con-
nection between these two approaches is touched on by Middleton4 in his section on
binary detection systems, although I believe that this is well understood in both the statis-
tics and communications literature. For convenience, a brief summary of these ideas will
be presented in an appendix.

2. The Method
Suppose the experimental data have been taken at the scattering angles ei and 0=0, the

intensity of the scattering light per unit solid angle is denoted as iexp(ei). We indicate the
numerically calculated intensity for each case as il, 2 (0ij,1l, 2 ), where ill is the varying
parameter (refraction index) for the case 1 and 112 is the varying parameter (inner radius)
for the case 2. In order to make a decision, we need to compare the experimental data
with the calculated data for the two cases. Therefore we consider the following minimized
deviation

Vk= min1, [i exp(ei)-ik(Oilk) (1)

by varying the parameter ilk for the case k. A simple thought is that one can choose the
correct hypothesis by comparing two minimum values v, and v2 and say that scatterer
belongs to case 1 or case 2 depending on whether v1 is smaller or larger than v 2. This is
true only when there is no any noise involved in the experimental data. When we consider
a real experiment, noise is always involved. We can not separate the noise from the experi-
mental data. The noise is assumed to have a known distribution. If the noise level is rela-
tively high, it will mix the two cases so badly that we can not distinguish them. The noise
level depends on the experimental apparatus, the environment and the kind of data taken.
For a given apparatus and environment, one should measure such data so that the relative
noise level is minimized. To understand the noise properties, we shall do some numerical
simulation and find out what kind data should be measured to minimize the relative noise
level. Although this is an important minimization process, we will not discuss it here and
assume the experimental data have been already taken at a set of appropriate angles Oi.
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Let H1 and H 2 denote the two hypotheses, case 1, the sphere, and case 2, the layered
sphere, respectively. The statistic we shall use to decide between these cases can be chosen
as

R=loglo(v 1/v2)• (2)

Suppose the conditional probability density P(R I Hk) of obtaining R under case k is
known. In the language of radar detection, the Neyman-Pearson is equivalent to minimiz-
ing the probablility PM of a miss (choosing the null hypothesis H1 when there is a signal,
i.e. H 2 is true) subject to a fixed probability PF of a false alarm (declaring that a signal
H 2 exists, when there is none, i.e. H1 is true). The constraint is:

PF=a=J P(R lHI)dR (3)
where X is the threshold above which a "hit" is chosen. After finding the threshold, X
from the specified value of ox, the Neyman-Pearson decision criterion is simply:

if A(R)>X choose H 2  (4)

if A(R)<X choose H 1  (5)

where A(R), the likelihood ratio, is defined to be:

A(R)=P(R [H1)/P(R IH2). (6)
A proof is supplied in the appendix.

3. Numerical simulation
First we generate uniformly distributed random numbers in the range of variation of the

parameter Tlk for case k and then use these parameters to calculate the intensity. Secondly,
we generate Gaussian distributed random numbers with magnitude of 5% of the intensity
and then add them to the intensity calculated in the first step, we will refer to these results
as test data it (00) Thirdly, we use the minimizing formula Eq. (1) above to find the dis-
tribution P(R /Hk). Finally, using the Neyman-Pearson criterion, we then can make a
decision.

Numerical results are given in Fig. 1. From Fig.1, we see a slight overlap of the two
sets of data near region R=O. From this figure, we can almost always tell which case is
correct from the value of R. When R falls in the region to the left of the overlap region we
can choose case 1, and when it falls in the right of the overlap region we can choose case
2. In the overlap region, we need to use the Neyman-Pearson criterion. The dots and A in
Fig.1 can be used as conditional probability densities P(R I H1 ) and P(R I H2), respec-
tively. Given an a, we can use Eqs. 4-6 to make a decision.

4. Another Apriori Distribution (Stuebing's Choice)
In this section, we want to distinguish the following two cases. Case 1: the scatterer is a

uniformed sphere with a index 1.33 and a wide varying radius from .1 to 10 microns. Case
2: the scatterer is layered with the inner radius being .9 times the outer radius. The latter,
however, can vary over the wide range from .1 to 10 microns. This uncertainty makes the
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decision problem much more difficult even though we maintain the core index at 1.33 and
the shell index at 1.55. The wave length is the same as in the previous example (.44
microns). Because ka =21ra/X can be large, the intensity of Mie scattering as function of
the outer radius has hundreds of oscillations. In order to find the true minimum of Eq. 1,
we must cut the outer radius into hundreds pieces to find the local minima. Then finally we
must compare these minima to find the global minimum.

The computer results for 100 tries for each case are displayed in Fig. 2.

5. The Probability of Errors of Both Kinds
Neyman and Pearson recognized that there were two possibilities of error: choosing

hypothesis H1 when H 2 is correct and vice-versa. A decision making process must assign
(probably different) costs to these two errors. Such criteria will be dealt with in our discus-
sion of the Bayes approach in the appendix. Here, we recognize that minimizing one error
will increae the other. For simplicity, we can require that these errors be equal, and adjust
the parameters to minimize that error.

The Neyman-Pearson criterion applies to any single test, i.e. when we obtain the value R
we compare the densities of probability for the two cases and then make a decision.

If we choose H1 when R 2t X, and H 2 when the opposite is true, how can we select the
decision threshold, X, so that both errors are equal? Let us denote

a, (X)=J P(R I H1)dR= probability of an incorrect guess of H 1  (7)
f

and

a2(W)=J _P(R I H 2)dR= probability of an incorrect guess of H 2  (8)

oa and a 2 are the total probability of a wrong guess for case 1 and case 2 with the boun-
dary R=X. In general, the importance of a "miss" is different from that of a false alarm,
and the threshold should be adjusted accordingly. When there is a clean separation
between the two cases, as in Fig. 1, the threshold should be close to X = 0 in any case. In
the absence of other information, we can choose to make the two errors equal. The deci-
sion threshold for the equal error case is given by:

a,1 ()=a2 00). (9)

Let us now define

F (X)= (a1(%)-a 2 (X)] (10)

Then the boundary value X can be found at the minimum of the function F. For the data of
Fig.] and 2, function F(R) is plotted in Fig.3 and 4 respectively. We see that for the case
of equal errors, the threshold based on the Monte Carlo data of Figs. 1,2 is not at the
noise-free value of zero, but is slightly negative. The meaning of the threshold X means
that we can globally make a decision knowing only that R is larger or smaller than the
threshold.
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6. Two-parameter tries
In this section, we consider a scatterer with two varying parameters. For the layered

sphere, the parameters are the inner radius and outer radius in the range of
4<Rinl*%.<5; 5.5 <Ro/ Xt,<6;

Here Ri,, and Ro are the inner radius and outer radius , respectively, and XL is the wave
length of the light. Although there is only one independent parameter in the uniform
sphere (q=mRo/XL) for a fixed wave length, for convenient in comparing with the layered
sphere, we still chose the two varying parameters as Ro, and m, where m is the refraction
index.

1000-pair random numbers for these parameters in the specified region are generated and
are plotted in Figs 6-7 for both cases. Horizontal and vertical polarized scattering intensi-
ties at five angles, 0=- 45, 50, 55, 60 and 65, are assumed to be detected. We use Gaussian
distributed random numbers to generate computer simulated experimental data. The distri-
butions of these random numbers are plotted in Figs. 8-9 for both cases. In Fig. 5, the
number of tries as function of R=log(vl/v 2) is given. The left profile is due to the
hypothesis H 1, the uniform sphere, while the right one is for the layered sphere H 2 .

Appendix: The Binary Decision Problem 3

The problem of detecting a layered sphere (as opposed to a uniform one) is analogous to
that of distinguishing a plane from a radar signal (as opposed to noise from other objects).
Statisticians refer to H1 as the hypothesis that the object of interest (e.g. the plane) exists,
and H0 as the small hypothesis (e.q. the noise). It is, of course, possible to deal with a set
of hypotheses Hi, but we are mainly concerned here with the binary decision problem.

There are two principal methods of dealing with the binary decision problem (referred to
as detection by electrical engineers):

(a) The Bayes Method
The first method uses the statistical ideas employed by Bayes. The Bayes method

assumes that an apriori probability Pi exists for the occurrence of Hi, and assigns a cost
C1i of guessing that Hj has occurred when, in fact, Hi has occurred. If we denote the con-
ditional probability

P (Hj I Hi) = Pr(chooseHj I if Hi is true) (A1)

then the average cost is given by

C= cji , (Hj I Hi)P (A2)
4j

Let us assume that a set of objects are measured, which we can describe as a vector R in
some multi-dimensional space Z. We shall assume the existence of a decision rule of the
form:

Choose Hj if R is in subspace Zj (A3)

Our problem is to choose the domains Zj in such a way as to minimize the cost, Eq. (A2).
With this decision rule, our cost, Eq. (A2) can be written in the form
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C = JCjifP(R IH i )dRPi (A4)
ij zj

We also have the normalization conditions:

JP(R I Hi)dR = 1 (A5)

In the binary case, normalization permits an integral over Z 1, to be expressed as an
integral over Z0 :

JP(R IJHj)dR=1- JP(R I Hj)dR (A6)
ZI Zo

As a result, it is possible to reexpress the cost, in the binary case, in the form

C =CoPo + C1 I P1 + f [(CoI - C11 )P (R I H1 )P 1
Zo

-(Clo - C0o)P (R IHo)Po]dR (A7)

But the cost of a wrong decision must be taken greater than that of a correct decision.
This we must have:

C1O > Coo ; C 0 1 > C1 1  (A8)

Thus aside from the first, fixed cost, term we have a difference of two positive terms. We
can therefore minimize the risk by choosing the region Zo to be such that the argument in
braces is always negative in that region, or conversely, any point R for which the argument
in brackets is positive is chosen to be in Z 1.

Thus we choose Z1 whenever

(Co, -C 1 1 )P(R IH 1 )P 1 > (CIO-COO)P(R I H0 )Po (A9)

or

P (R [H 1 ) (CIo - C0o)Po (A1O)
P(R IH 0 ) (C 0 1 -C 1 1 )P 1

Thus the multidimensional statistic R is replaced by a one-dimensional quantity A (R), the
"likelihood ratio". The latter is to be compared with a parameter X which is fixed. The
handling of the data is thus confined to computing the maximum likelihood ratio A (R)
even though the costs or the apriori probabilities P 0 and P 1 or costs may not be known.

(b) The Neyman-Pearson Method
The Neyman-Pearson test arrives at the identical result by considering the problem of

minimizing the probability PM of a miss (choosing H0 when a "real target" H1 is true)
subject to the constraint of a fixed probability of a false alarm PF (choosing a "real tar-
get" H1 when He is true). In this case, one chooses Coo =C 11 =0, Co, = CM,
C10 = CF. One minimizes PM subject to a fixed false alarm (PF = x) by minimizing

F = PM + X[PF - X] (All)
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where X is a Lagrange multiplier.

F can be rewritten as

F= fP(R IH1)dR+ X[ fP(R IHo)dR-a] (A12)
Zo Z1

If we constrain PF = a, the second term vanishes, and minimizing the first term, PM, is
equivalent to minimizing F. In view of the normalization conditions, Eq. (A5), Eq. (A12)

can be rewritten as

F-X(1-a)+ f [P(R I Hi)-XP(R I Ho)]dR (A13)
Zo

Assume that X is positive. To minimize F, we choose the domain R to include all points
for which the bracket is negative. Thus if

P(R 1H1)
A(R) P(R [Ho) <XchooseHo (A14)

Again, the decision is based on the "likelihood ratio", A (R). This criterion is equivalent

to that used by the Bayes method, except that the costs and apriori probabilities are
unknown. Instead of Eq. (A13), X is chosen by the originally specified constraint:

a*

PF=JP(A IHo)dA=a (A15)
X

All that is needed, is a knowledge of the conditional probabilities P ( R I Hj).

1J. Neyman and E. S. Pearson, "On the Problem of the Most Efficient Tests of Statistical
Hypotheses," Philosophical Trans. A, 231, 289 (1933)

2M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Volume 2 Hafner Publishing Co,
New York (1967)

3H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part 1, John Wiley and Sons,
(1968)

4David Middleton, Introduction to Statistical Communication Theory, McGraw-Hill (1960)
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Fig.1. N(R), number of tries falling 100
into a interval of dR=0. 1 is plotted.
The dots are for the case of uniform
sphere with a varying refraction 80-
index 1.33 to 1.55. A are for the
case of the layered sphere with core 70
index 1.33 and shell index 1.55 and 60-
a varying inner radius from 1.76 to
2.2 micron. The outer radius is 50
fixed at 2.5 micron for both cases.
The total number of tries is 1000 ..

for each case. The intensity of one 30- £ ,,A ,
scattered light of one polarization at 20 - A £

O= 45,50,55,60,65 and 40 are - , A

used. 10- " . £

* .AA~t *A AA

.. • •.,,

0I I I I

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

log10(v 1 /v 2)

Fig.2. N(R), the number of tries fal- 20
ling into a interval of dR=0.1, is
plotted. The dots are for the case of 18
the uniform sphere with a refraction 16
index 1.33. The A are for the case
of a layered sphere with core index 14-
1.33, shell index 1.55 and inner 12-
radius 0.9 times outer radius. The
outer radius can vary from 0.1 to 10 10 A

microns for both cases (wide vary- 8
ing range). The total number of .. A a A

tries is 100 for each case. Intensity 6 - A A

of one polarization of scattering 4 A.... .. A

light at the angles 0=- a AA A

45,50,55,60,65 and 4- 0 are used. 2 - AA A A

A A A AAa & AA

0 I ,

-3 -2 -1 0 1 2 3

log10(v 1 /v 2)
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Fig.3. Plot of function F for the
data from Fig.1. The minimum is at -2- .

X--0.1 with the EPOWG of 1%.
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Fig.5. Two parameter plot. Number 120

of tries is plotted as function of 110
R=log1 o(VI/v 2). For the case of 100_
uniform sphere, the two parameters 90-
are a refraction index in the range
of 1.33 to 1.55 and radius in the 80
range of 2.43 to 2.64 microns. For 70-
the layer structured sphere, the core 60 -
index 1.33 and shell index 1.55 are 50
fixed. The two varying parameters
are the inner radius in the range of 40 -
1.76 to 2.2 microns and outer radius 30
in the range of 2.43 to 2.64 20-
microns. The total number of tries
is 1000 for each case. The intensi- 10-
ties for two polarized lights at = 01
45,50,55,60,65 and =0 are used. -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

lOg 1O(v 1 /v 2 )

Fig.6. lO00-pair random numbers 6 S to ",'4 1' .a

are generated for the two varying . • : . " . .. -
parameters of uniform sphere. The '0. • ", . , .' - .

two parameters are the refraction . . ".. "
index in the range of 1.33 to 1.55 •. to: • ... .. "' ,".
(the horizontal axis) and radius in .... * " "• " .s. " " .'.: to ...
the range of 2.43 to 2,64 microns •o • - . ., : • . .. -
(the vertical axis). - • • " . :

S : . t. 4 1 . . .o . . .

" ." . t. o . * " " '..-- * * *• *• * * •* * 0 • • • "

to • to I 4, .. . . .- *'... .... .. ,.:...,... :

5 .5 " •o : 't : ".
1.33 1.55
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Fig.7. 1000-pair random numbers...
are generated for the two varying %, -. .

parameters of layer structured 5 . . ." ." ." * • . . . .

sphere. The two parameters are the ".. ". " , t "
inner radius in the range of 1.76 to . ... * . v . * • • .. --
2.2 microns (the horizontal axis) :'* " ."'." . ""
and the outer radius in the range of • ; '-. :: t..,*
2.43 to 2.64 microns (the vertical ." : *'0 * :.'.7" . . £ .
axis). for two polarized lights at 0= .. . . . • •9t
45,50,55,60,65 and 0=:( are used. 5.7 . . - "" .

.*. • .: .. . . . .. _

5.6 - . " . ," " . .5.6 Pl o. of t.h .-0 .a.r:z.".. 5 •

99 numbers whi c . ade to00# I .• % *. *9 0• J9 0,*.. J*' 0 9* . t;" -"

the inenit ofo sctern lih fo 
o400

5. "" i" : " ::. "":"' '' ** '

4 4.2 4.4 4.6 4.8 5

500-
Fig.8. Plot of the 10000 gaussian
random numbers which are added to
the intensity of scattering light for 400-

the uniform sphere.

300-

200-

100-

0 -" 1 - -'-

-5 0 5
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500 - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Fig.9. Plot of 10000 gaussian ran-

dom numbers which are added to
the intensity of scattering light for 400-
the layer structured sphere.

300-

200-

100-

0-
-5 0 5
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Spectral Region", Final Report, CRDEC SSP 88-22, in preparation.

The reflectance of a graphite fiber sample (Hercules IM6),
type 316L stainless steel, two samples of iron fibers, rutile and
terephthalic acid were measured from 10 to 50,000 wavenumbers.
Kramers-Kronig analyis or oscillator analysis was used to extract
the complex refractive index from the measured reflectance. Work
is continuing on Hercules C3X graphite fibers.
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INTRODUCTION

The work described in this report was carried out at the
University of Missouri-Kansas City and at the University of
Missouri-Rolla. Reflectance measurements at infrared, visible and
ultraviolet wavelengths were made at the University of
Missouri-Kansas city Optics Laboratory and measurements at longer
wavelengths were made at the Far Infrared Spectroscopy Laboratory
at the Unversity of Missouri-Rolla. The far infrared reflectance
measurements were made using a modified Beckman-RIIC Far Infrared
Fourier Transform Spectrometer with a Golay cell detector. The
near-infrared and visible measurements were made with Carey and
the ultraviolet reflectance measurements were made with a
Perkin-Elmer instrument.

Individual samples and results are discussed below, but here
we outline the general techniques used and the type of results
obtained. Most of the samples to be measured were in the form of
powders or metal fibers. These materials were pressed into
pellets. The reflectance, R, of these pellets was measured from
the far infrared to the ultraviolet. For the crystalline
powders, namely rutile and terephthalic acid, the measured
reflectance was fit with an independent oscillator model. From
the oscillator parameters, the real part of the refractive index,
n(w) and the imaginary part of the refractive index, k(w), can be
calculated as a function of the frequency, omega. Tables of the
data can be found in the report referenced above or obtained from
Mr. Merrill Milham at the United States Army Chemical Research,
Development and Engineering Command at Aberdeen, Maryland.

The metal fiber and graphite powder samples were also pressed
into pellets. The stainless steel fiber sample did not make a
satisfactory pellet and so a bulk sample of the same kind of
stainless steel was measured. Again for all these samples,
reflectance was measured from the far infrared to the
ultraviolet. For the bulk stainless steel, measurements were
made with a non-resonant cavity in the far infrared. For these
samples an oscillator fit doesn't describe the sample correctly
and so we performed a Kramers-Kronig analysis of the data to
obtain n(w) and k(w). Again the results are tabluated in our
contract final report and were transmitted to Mr. Milham at
Aberdeen.

TEREPHTHALIC ACID

The terephthalic acid powder used was obtained from the Kodak
Chemical Company. Using an hydraulic press and standard 13 mm
diameter die, pellets were pressed. An excellent smooth, shiny
finish was obtained on the surface of these pellets. Figure 1
shows the measured reflectance for a pellet of terepbthalic acid.
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FIGURE 1: MEASURED REFLECTANCE FOR TEREPHTHALIC ACID (solid
line). Calculated reflectance for terephthalic acid from
Eq.(1) using the fit parameters from Table I (dotted line).

The measured reflectance was fit to a four parameter
oscillator fit. The form of the four parameter oscillator is

02 _ 2  -
f.+ 2 = f + i f + j JLO jLO (1)

fj2 O ( 2  2-ii

jLO jTO

c = (n + ik) 2
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This equation is taken from Gervais and Pirioul and gave a
better fit to the measured reflectance than did the usual three
parameter fit. A simplex routine was written to find the
parameters in Eq. (1) from the measured ref lectc-nce. The
parameters of the fit to Eq. (1) are given in Table I. It
required 26 oscillators to fit the measured reflectance. Figures
2 and 3 show the calculated n(w) and k(w~) using the parameters of
Table I. Because the sample was a powder, we cannot determine
the axial orientation of the oscillators.

TABLE I. OSCILLATOR FIT PARAMETERS FOR TEREPHTHALIC ACID

Epsilon Infinity =2.672731E+00

Omega LO Omega TO Gamma LO Gamma To

3.412226E-O1 1.134454E+00 3.141359E+01 1.136635E+01
1.963044E+02 1.961179E+02 6.610109E+01 6.069158E+01
2.872253E4-02 2.869526E+02 2.975464E+01 2.878901E+01
3.426134E+02 3.427794E+02 2.340949E+01 2.375019E+01
4.346661E+02 4.351035E+02 2.432366E+01 2.335594E+01
4.973356E+02 4.972266E+02 1.171355E1-01 1.096206E+01
5.254370E+02 5.246458E+02 1.233165E+01 1.094883E+01
5.378671E+02 5.380323E+02 1.286756E+01 1.296866E+01
5.797212E+02 5.787125E+02 2.056138E+01 2.384116E+01
7.360277E+02 7.334085E+02 6.815039E+00 8.284336E+00
7.852258E+02 7.831400E+02 1.163604E+01 1.185021E+01
8.861681E+02 8.851940E+02 1.217681E+01 1.326811E+01
9.455857E+02 9.390853E+02 4.057190E+01 4.136718E+01
1.019547E+03 1.019199E+03 1.135041E+00 6.669838E-01
1.l19379E+03 1.118974E+03 4.854231E+00 4.953890E+00
1.142040E+03 1.141491E+03 7.789229E+00 8.624388E+00
1.306162E+03 1.288753E+03 4.370269E+01 3.604603E+01
l..431583E+03 1.426795E+03 1.649779E+01 1.707556E+01
1.509321E+I03 l.508815E+03 1.351949E+00 1.684683E-01
1.580776E+03 l.580365E+03 8.825333E+00 9.519658E+00
1.709666E+03 1.687345E+03 2.825751E+01 2.513271E+0l
2.557554E+03 2.547019E+03 2.046527E+02 2.051552E+02
2.666428E+03 2.661515E+03 1.229304E+02 1.176768E+02
2.804322E+03 2.802767E+03 1.38900IE1E02 1.263177E+02
2.995279E+03 2.993081E+03 1.444847E+02 1.366910E+02
3.052491E+03 3.035247E+03 5.195965E+02 5.825635E+02

102



2.6

2.5

2.4 L
2.3 •

2.2 r-

C1.8

1.7

1.1
1.3-

1.2-

11.72 450 835 1220 1805 1990 2375 2760 3145 3530 3915

Wavenumber, Inverse Centimeters

FIGURE 2: REAL PART OF THE COMPLEX REFACTIVE INDEX, n, FOR
TEREPHTHALIC ACID calculated from the oscillator fit.
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FIGURE 3: IMAGINARY PART OF THE COMPLEX REFRACTIVE INDEX, k, FOR
TEREPHTHALIC ACID calculated from the oscillator fit.
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RUTILE

Rutile (Ti02) powder was purchased from Kodak Chemical Com-
pany. Despite the fact that rutile is quite hard, we were able
to press satisfactc.ry pellets in the hydraulic press with good
surface finish. Again, the reflectance was measured as a function
of wavelength. The parameters of Eq. (1) were again determined
by fitting the measured reflectance. Figure 4 shows the measured
reflectance, R(w). Table II shows the oscillator parameters
determined from the fit to the measured reflectance. Figures 5
and 6 show n(w) and k(w) calculated from the oscillator fit.

0.5 I-

0.4 I-
111

I I.

0.2

0.1 L...

19.53 415 765 1115 1465 1815 2165 2515 2865 3215 3585 3913

WAVENUMBEI�S. INVERSE CENTIMETERS

FIGURE 4: MEASURED REFLECTANCE 01 RUTILE POWDER versus frequency
in cm1 .

TABLE II: OSCILLATOR FIT PARAMETERS FOR RUTILE

Epsilon Infinity = 3.27
Omega LO Omega TO Gamma LO Gamma TO

6.272781E+O1 6.433150E+01 2.697446E+Ol 2.983328E+Ol
3.661339E+02 2.446405E+02 1.554678E+01 2.843664E+02
l.777941E+02 1.927793E+02 9.955939E+01 8.522772E+Ol
7.866856E+02 3.693307E+02 6.456564E+Ol 2.327765E+Ol
5.194609E+02 5.045944E+02 9.641367E+O1 7.032333E+0l
4.104109E+02 4.289806E+02 2.52278��E+02 9.298299E+O1
4.399180E+02 5.546226E+02 5.164677E+O1 3.121541E+02
l.003910E+03 9.959520E+02 1.757303E+02 l.335943E+02
3.684361E+03 3.717502E+03 9.654258E+02 1.050955E+03
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FIGURE 5: REAL PART OF THE COMPLEX REFRACTIVE INDEX, n, for

rutile calculated from the oscillator fit.
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FIGURE 6: IMAGINARY PART OF THE COMPLEX REFRACTIVE INDEX, k, for

rutile calculated from the oscillator fit.
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STAINLESS STEEL

Stainless steel fibers of type 316L stainless steel were
obtained from Dekaert Steel Wire Corporation, IrviNg, Texas. The
fibers were 2 micrometers in diameter and were woven into a mesh.
The fibers were coated with polyvinyl alcohol. The mesh was
chopped up and the fibers washed to remove the polyvinyl alcohcl.
We then attempted to press pellets from the fibers. We were
unable to do this. Hence we used bulk type 316L stainless steel
and measured its reflectance as a function of frequency from the
far infrared to the ultraviolet. Better results were obtained at
far infrared wavelengths using a non-resonant cavity. 2 The
measured reflectance, R(w), is shown in Figure 7 and the real
part of the surface impedance, rs(w) in the far infrared
(measured using the non-resonant cavity) is shown in Figure'. 8.

1.1-.

0.9'-
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JI0.7
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0.5-

0.4 -

0.3 I 1. I _ I -. -
100 240 525 1050 1650 2800 8000 20000 32051 44053

WAVENUMBER - INVERSE CENTIMETERS

FIGURE 7: MEASURED REFLECTANCE OF TYPE 316L STAINLESS STEEL ver-
sus frequency in cm-1 .

Using rs(w), we calculated R(w) assuming that the stainless
steel was a good conductor. This R(w), calculated in the far
infrared (100cm-I to 400 cm- 1 ) was combined with the measured
R(w) for the near infrared, visible and ultraviolet to use in a
Kramers-Kronig analysis to determine n(w) and k(w) for the type
316L Stainless Steel. The resulting n(w) and k(o) are plutted in
Figures 9 and 10 as a function of wavenumber.
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A Drude model fit was made to the n(w) and k(w) at long
wavelengths where one expects the Drude model to hold. Table III
qives the Drude model parameters determined from the fit. The
Drude model fits the data well from 50 cm- 1 to about 400 cm- 1 .

TABLE III: DRUDE MODEL PARAMETERS FOR 316L SS AND IRON FIBERS

Metal w w

Stainless Steel 316L 23500 478

Fe pellet 15900 226

0.010
L

C 0.008
.4J

aU 0.006

D 0.004
U,

'0
a)
N

S0.002
EC-

0

0 100 200 300 400 500

Wavenumber,w (cm- 1)

FIGURE 8: REAL PART OF THE SURFACE IMPEDANCE, r., versus
frequency in cm- 1 for type 316L stainless steel as measured
with a non-resonant cavity.

Two different samples of iron fibers were supplied by the
U.S. Army Chemical Research, Development and Engineering
Command. These samples were not further identified so we call
them sample 1 and sample 2 which is the way they were labelled
when delivered. The iron fibers were soft enough to press into
pellets with a surface quality sufficient to allow measurements
in the infrared.
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FIGURE 9: REAL PART OF THE COMPLEX REFRACTIVE INDEX, n, 
for type

316L stainless steel versus frequency in cm- 
determined from

a Kramers-Kroflig analyis of the ref lectanct.e.
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FIGURE 10: IMAGINARYi PART OF THE COMPLEX REFRACTIVE INDEX,

k, for type 316L stainless steel versus frequency 
inl cm-1 deter-

mined from a Kramers-Kroflig analyis of the reflectance.
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In the far infrared, the reflectance of the iron fiber pellet
was measured, the pellet was then vacuum plated with a gold film
and remeasured. The gold plated sample was the reference for the
iron sample and was corrected for the known reflectance of gold.
The measured reflectance from 50 cm-1 to 400 cm-1 is shown in
Figure 11. A Drude model fit should be appropriate to a metal at
these wavelengths and it was made. From the Drude model fit,
n(w) and k(w) were calculated. The Drude model parameters are
given in Table III (above) and the calculated values of n(w) and
k(w) are plotted versus wavenumber In Figure 12 and 13. NO
DIFFERENCE was found between the two samples of iron fibers and
so the data given applies both to sample 1 and sample 2 of the
iron fibers.

0.998

0.996 I

0.992

0.992

0.998

h.8
0.954

S 0.982

0.95 1
0.978

0.976

0.974 * ~-~~4

35 45 80 so 100 120 140 160 180 200 220 240

WAVENUMBER - INVERSE CENTIMETERS

FIGURE 11: MEASURED REFLECTANCE OF IRON FIBERS versus
frequency in cm-1 .
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FIGURE 12: REAL PART OF THE COMPLEX REFRACTIVE INDES, n, for
iron fibers versus frequency in cm-1 determined from a Drude
model fit to the measured reflectance.
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FIGURE 13: IMAGINARY PART OF THE COMPLEX REFRACTIVE INDEX,
k, for iron fibers versus frequency in cm- 1 determined from a
Drude model fit to the measured reflectance.
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GRAPHITE

The contract called for the analysis of two types of graphite
fibers. The first was Hercules C3X. This powder was not avail-
able from Hercules because it was a single experimental batch
that had been made for the U.S. Army Chemical Research, Develop-
ment and Engineering Command and Hercules had delivered the
entire batch to them. A sample was finally located at CRDEC and
measurements will be made on it and reported later.

The second graphite sample was IM6 Magnamite obtained from
Hercules also. This material was in the form of a fabric woven
from graphitized fiber. In order to measure the optical proper-
ties of the graphite in these fibers, the fibers were separated
from the fabric and then ground into a very fine powder. Pellets
were pressed with great difficulty from this powder.

Figure 14 shows the measured reflectance of a pressed pellet
of IM6 Magnamite in the far infrared region of the spectrum. To
determine the optical constants, a Drude model fit to the reflec-
tance was attempted. We were unable to make a satisfactory fit,
which indicates that the free carrier concentration in this mate-
rial is sufficiently low that it does not dominate the optical
properties. Instead, a Kramers-Kronig analysis was pcrformed on
the measured reflectance and n and k determined this way is shown
in Fig. 15 and 16.
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FIGURE 14: MEASURED REFLECTANCE OF A PRESSED PELLET OF IM6
MAGNAMITE graphite versus frequency in cm- 1 .
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FIGURE 15: REAL PART OF THE COMPLEX REFRACTIVE INDEX, n, for
IM6 magnamite graphite.

3.0 j

2.0

1.0

0 L .. .-.. LT .---.. L

0 5000 10000 15000 20000 25000
Wavenumber, (cm-I)
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k, for IM6 magnamite graphite.
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ABSTRACT

We report electric field induced fluctuations in the elastic scattering near optical resonances of

a spherical aerosol particle trapped at the "null" point of an electrodynamic levitator. The

particle is apparently driven into a quadrupolar distortion by the electro-mechanical stress at its

surface. Our results coupled with recent theory indicate that, (1) the effect is principally due to

a modulation in the frequencies of individual optical resonances, (2) a coherent distortion

smaller than a part in 105 (-IA) is detected in this manner, and (3) the effect may be used for a

continuous probe of surface tension and bulk viscosity.
* Permanent Address: Department of Physics, Polytechnic University, Brooklyn, NY 11201
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The spectroscopy of microparticles levitated and trapped in electric fields is

now quite extensive. 1 It has always been assumed that the influence of the electric field

is confined to levitation and trapping. In fact, we will show that a time varying electric field

having quadrupole symmetry and an amplitude -10 V/cm at the particle surface leads to

an easily measured fluctuation in optical scattering. The particle is apparently driven into a

quadrupolar distortion by the electro-mechanical stress at its surface. Our results coupled

with recent theory2 indicate that, (1) the effect is principally due to a modulation in the

frequencies of Individual optical resonances, (2) a coherent distortion as small as a part in

1o5 (-1 A) is detected In this manner, and (3) the effect may be used for a continuous

probe of surface tension aiiu bulk viscosity. In what follows we describe our experimental

setup, display the results, and present a model for understanding these results.

The experimental apparatus is shown in Fig.l. In addition to the usual

trapping field provided by a supply at amplitude V1 and frequency ,1 (2a-r x60 Hz) from

the center electrode to each of the hyperboloids of revolution, there is an additional set of

hoiiow cylindrical electrodes (1/8 in. in diam. and separated by 0.145 in.) insulated from

the hyperbolic electrodes and driven by another supply at amplitude V2 and frequency

(1)2 (with switches S closed). These cylindrical electrodes create an additional time varying

potential near the center of the apparatus which is also of quadrupole symmetry(to 1st

order), but which is driven at a higher frequency (3 kHz-16 kHz). The dc levitation field is

provided by a battery supply attached between the cylinders.

A charged glycerol particle -40 Itm in diameter is generated on demand,

charged and "loaded" into the center of the apparatus by injecting 3 it through the top

cylinder with switches S opened. Once the particle is captured by the low frequency field,

switches S are closed with V2 set to zero and the particle is balanced by adjusting the

battery supply. Now V2 is turned up to a few hundred Volts, however, this field has no

noticeable effect on the trapping process; this is to be expected since the trapping force

on a micron-sized particle at atmospheric pressure follows an inverse power law with

frequency 4 . The more important effect as we will show is on elastic scattering.

Light from a dye laser is directed upward along the symmetry axis in Fig.l.
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The laser beam is polarized In the plane of scattering. Light scattered by the particle is

collected at right angles through an F/6 aperture and detected by two photomultimpliers.

S

V ___SW11

R, Ref.

S V2 cos (,,)
Beam from
Dye Laser

Fig.1 Experimental Apparatus.

The output from the first phototube, S, is conditioned by a low-pass fiiter(3db at 10 Hz),

while the signal from the second phototube, S,)2, is fed into a Lock-in amplifier operating

as a vector voltmeter. The reference for this phase sensitive detector was proportional to

the ac potential on the cylinders. Both conditioned signals were recorded simultanously

as two "Y" Inputs to an XY recorder.

Spectra were principally obtained as a function of wavelength, with the

particle size approximately constant , however, similar effects were seen as a function of

time with the wavelength flxgd but the particle size changing slowly through evaporation.

Each of these methods allows the optical size (circumference/wavelength) of the particle

to continuously change so that the particle is brought in and out of optical resonance.

Fig.2a shows the time averaged scattering S as a funtion of dye laser wavelength for a
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glycerol particle ;d4.0! in radius. Below this spectrum is the corresponding r.m.s
fluctuation ISt,)21 produced by placing a potential V2 = 355 Volts at (')2 = 2 x3 kHz on

Wavelength(nm)
577.20 582.34 586.7

4 --

(b)

5 '

4

3 -

582.22 582.34 582.37 582.74
Wavelength(nm)

Fig. 2 Time averaged scattering S and electric field induced fluctuation IS0 2 1 spectra of a

glycerol particle 24.O0tm in radius. oj2 and V2 are 2.- x3 kHz and 355 Volts, respectively.

the cylindrical electrodes in Fig.l. As one can see the spectrum of IS021 is (1)
considerably different than S with signal only appearing near positions of the narrowest
resonances in S, and (2) weaker than S with the largest peak only -1.5% of the largest
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amplitude in the time averaged scattering. In addition, each of the features in the IS(,)2 1

spectrum appears to be split as illustrated by the expanded spectrum of the region

around 582.34nm(Fig.2b). Fig.3 demonstrates the same effect at a considerably broader

resonance of another particle 14.71A in radius.

5

4

3

2

Is'W X5

0 A
586.68 586.74 586.97

Wavelength ( nm)
Fig. 3 Spectra of a glycerol particle 14.7ltm in radius. (,)2 and V2 are 2a x4 kHz and 450 Volts,

respectively.

We note that the fluctuation amplitude is markedly reduced. In order to further

understand the mechanism for the IS(,) 21 spectra we isolated a given peak and observed
the dependence of the peak height on drive voltage V2 and frequency (,)2. The height Q
the peak was found to be orooortional to V2 and aDroximately inversely

=IIrIenat, 0 2 (with the measurement taken from 2, x4 kHz to 2a xlO kHz).
The most likely mechanism for the light scattering fluctuation spectrum in

Figs.2 and 3 is an electro-mechanical distortion of the particle from its spherical shape due

to the stress caused by the external field on excess charoe on the particle surface. In what
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follows we briefly describe how this interaction can lead to the observed fluctuation.

Any static distortion may be modeled in terms of a sum of spherical harmonics

YLM. However, since the external stress is axisymmetric (M=O) with quadrupole symmetry

(L=2), and varies at frequency o*2 [i.e. the potential produced by the external electrodes

near the "null" point has an angular dependence which varies as P2 (0)], the s,.irface

distortion must select this symmetry, and the angular dependence of the patr=:ae radius is

approximately

r (e,t) = a [11+ P2(o) Re (A e6 (t)]()

where A is the complex distortion ( i.e. A =IAI e i4 ) along the axis of symmetry(vert. axis),

and a is the radius of the undistorted sphere.5 One might expect such a distortion to

perturb the optical Morphological Dependent Resonances(MDRs) cf me particle. In fact

Lai et al2 have recently theorized that for a plane wave incident along the axis of symmetry

of a slightly eccentric spheroid(i.e. IAVa<<1) having axial distortion A, the MDRs which are

stimulated are shifted in wavelength by 6Xr - (1/4) (A/a) Xr. Thus one can picture each

resonance in the dynamic case as shifting back and forth in wavelength at frequency Q)2

with an amplitude 16XrI. As a laser with zero linewidth is tuned slowly through such a

feature the rms fluctuation in scattering will be proportional, to first order, to the derivative

of the scattering spectrum, IS(,)2 1 - (1N'2) (aS/aX)-. 4Xr1. One can now understand, in a

qualitative manner, the shape of the fluctuation spectrum in comparison with the

scattering spectrum. The fluctuation spectrum will be most pronounced where the

derivative of the scattering spectrum is greatest (near narrow resonances) and every peak

in S will appear to be split since there are two wavelengths within a givei peak for which

the absolute derivative is maximum. One can estimate the amount of distortion from the

ratio of the fluctuation amplitude to the scattering amplitude,

IA= _ 2 IS 2I (2)
a PxXr S (

where p3. = I(aS/aX)x I/S, Since the actual laser linewidth 1"'nm) is -1/3 of the width of

the narrow resonance in Fig.2b, to avoid rather uncertain •nvolution, we will apply
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Eqn.2 to the data in Fig.3 where the larger breadth of the scattering feature makes the

need for such a deconvolution relatively unimportant. For the peak at the right in the pair

centered at 586.74nm, ISo2 iS is (1.7=0.2)X1o- 3, p3X is (2.7&0.1)nm"1, and IAI/a turns

out to be (6*1) X10 6 . Therefore our hypothesis for the fluctuations suggests the ability

to detect a periodic distortion of amplitude less than 1 A. This hypothesis may be further

supported by comparing our experimentally estimated distortion with a direct calculation

using dynamical elasticity theory.

The entire calculation will be presented elsewhere, however, a summary of

the key results are given here for the sake of completeness. ) he observation that the

effect is proportional to V2 indicates that it is first order in the local field. The largest first

order effect in the Maxwell stress at the surface may be identified as being due to the

interaction of the local field E (in the absence of excess charge) with the excess charge

density oe (at the surface). In the radial direction this interaction leads to a pressure

oeEr(a,O)ei(I)2t. Since Er(a,O) has quadrupole symmetry it maps perfectly onto the

quadrupole capillary oscillatic• of the sphere with the resulting distortion

___ _ ____(3)

A r -! 5K I 2 oeV2(3

%2 0)02

where (00 is the resonant frequency of an undamped quadrupole capillary oscillation, y

is the the damping rate, K is the static dielectric constant, go is the characteristic length

associated with the external electric potential [i.e. the external potential far from the

particle is taken to be (r/go)2 P2 (0)V2ei (')2 t], Oe is the excess surface charge density,

and as is the surface tension. Eqn.3 indicates that in order to obtain an approximate

inverse dependence on o2 , in agreement with experiment (Fig.3), -1 >>»o0 ; the system

must be overdamped. w0) and y may be estimated for the quadrupole mode using (')02

=8cs/(pa 3) and y =10r/(a2 p), where q and p are the particle viscosity and density,

respectively. 6 Using these expressions we find y .89x('•o for a glycerol particle 14.7jAm

in radius, at room temperature, consistent with overdamping. To further check the validity
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of our mechanism we can estimate the distortion corresponding to the data in Fig.3 using

Eqn.3 and the expressions for o•0 and y. In the overdamped limit the distortion is given by

o 
(4)

[aija 2 1[(3+2K)J 0

Since the size and density of the particle are known, the particle's mass is known. Given

the mass, the charge on the particle may be obtained from the levitating field (which is
determined from the dc levitation potential and the electrode geometry); using an

equation similar to Millikan's balance equation. For the particle used in Fig.3, ce is found

to be 71 1 C/m2 : Using this charge density, handbook values for the dielectric constant K

and viscosity rl for glycerol, taking go to be 1.8mm (approx. half separation between the

cylindrical electrodes), and V2 = 450 Volts, we find IAI/a for the particle in Fig.3 to be

6.8X10-6 . This is consistent with the value for AlA/a of (6±1)xl0-6 obtained by applying

Eqn.2 to the experimental data in Fig.3. Thus the basic hypothesis appears to be

reasonable.

Although surface tension drops out of the analysis for the overdamped case,
by combining Eqns.2 and 3, one clearly sees that a spectrum of Sc,2 vs. (')2 can give

both surface tension and viscosity. In cases where 0,)o>>y (e.g. water, methanol, etc.) the

line shape of S0)2 vs. o02 near a quadrupole capillary resonance provides this information

wihout specific reference to the spectrum of S.

Aside from the utility which such a technique provides for determining os and
rj, the ability to generate a small distortion of known amplitude should go a long way in

increasing our understanding of the orders of magnitude disparity which has been

found7 between the photon lifetime within a microparticle as determined from Mie theory

and experiments. 7 ,8,9 Recent theory by Lal et a110 suggests that thermal fluctuations at

the surface of a liquid particle are -iA, and that such an amplitude can reduce the 0 In a

glycerol particle from 109 (based on Mie theory) to -106. Consequently it would be

interesting to investigate the effect which tho electric field induced fluctuations have on
processes which are thought to be sensitive to Q,11 such as intermolecular energy

transfer within i micropartlcle 1 2. Such experiments are currently underway at the Mp3 L.
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ABSTRACT

We are developing particle-inlet mass spectrometry (PIMS) for analyzing the elemental or Isotopic
composition of single particles from aerosol and particulate samples, without Isolating particles of interest.
With PIMS, particles are dispersed and resuspended in a gas at atmospheric pressure and admitted
directly into the ion source of a mass spectrometer. Particles are measured individually by sequential
admission into the mass spectrometer. Both real-time and off-line measurements of aerosol particles are
possible. Of particular importance Is the measurement of isotope ratios in single particles, which improves
the detection of elements and is useful for monitoring the release of radioactive pollutants into the
environment and for isotopic tracer studies. PIMS is based on the method developed by Davis [1,2] and
can be applied to a variety of particle and aerosol analysis problems.

EXPERIMENTAL METHODS

The PIMS instrument is a single-focusing, 600, 15-cm-radius, magnetic sector mass spectrometer,
equipped with a multi-channel, pulse-counting ion detector and a thermal-ionization ion source [3]. A
specially designed aerosol inlet, containing a nozzle-skimmer system, forms the basis of the PIMS
technique. The inlet reduces the pressure In the aerosol and directs the particles into an oven in the mass
spectrometer ion source. A rhenium-foil oven traps the particles, vaporizes them, and thermally ionizes
the vapor. The ions are extracted, focused, and accelerated into the mass spectrometer for analysis. Ions
are measured using a multi-channel ion detector, equipped with a microchannel plate.

The PIMS instrument accepts samples in aerosol form. To generate aerosols from collected
particulate samples, the sample Is loaded onto a filter and then vacuumed from the surface using the
airflow entering the Inlet of the PIMS Instrument. The vacuum is sufficient to dislodge gm-sized particles
from the filter surface and draw them up through a tube and into the inlet; better than 90% of the
particulate mass is removed from the filter using this process. An automated sample introduction system
has been built that scans filters past a tube connected to the PIMS inlet.

The analysis of an aerosol sample consists of admitting particles into the PIMS instrument and
monitoring the resultant ion signals. Ion counts are acquired over a series of 200 msec Integration steps
(steps from 5 msec to 6 sec are possible), Mass spectra, reflecting the average composition of a
population of particles, are obtained by scanning the magnetic field during data collection. For example,
the uranium isotope ratio in single particles can be measured by tuning the magnetic field so that 235UO
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and 23SUO are focused on the Ion detectors. Particles containg U (such as mineral grains) produce ion

bursts that typically covers several 200-msec steps. Isotope ratios are calculated as

R - (C1 - NxB1)/(C2 - NxB2 )

where R is the Isotope ratio, C1 and C2 are the total ion counts on isotopes I and 2 during the ion burst, N
Is the number of steps covering the ion burst, and B I and B2 are the average backgrounds per step for
each Isotope.

1ESULI.

Typical results for an environmental sample are shown in Fig. 1, which is a scan of the 1- to 300-
amu mass region taken during admission of -0.5 mg of an airborne dust sample. Many elements can be
identified In Fig. 1, including alkalies, alkaline earths, rare earths, Re, Ta, U, and Th. PIMS easily detects
both uranium and thorium in the sample (which contains 5.5 ppm U and 7.4 ppm Th) as the ion signals due
to ThO+, UO+, and UO2+ were 103 to 104 times greater in the sample than in the background. Our results
show that U02 particles larger than 1.5 Imn diameter (containing 19 pg of U02 ) can be detected, based on
measuring a 235UO/238 UO ratio of 0.0072.

Results of measuring 235UO and 238UO ions simultaneously in single particles are shown in Fig. 2,
which Is data from a sample of TiO2 + 0.1% U0 2 . ion bursts occur simultaneously at both 235Uo and
238UO, with individual bursts having a 236 U/238U ratio that was, to within 10 to 50% errors, consistent with a
ratio of 0.0072. Similar measurements made with 23sUo on one detector channel and no isotope peak on
the other channel (corresponding to mass 257) gave ratios much lower than when both uranium isotopes
were analyzed. These results clearly demonstrate the capability of using PIMS to measure Isotope ratios in
single particles.

As an example of the sensitivity of PIMS, Fig. 3 shows a scan of the uranium mass region during
admission of reagent-grade T10 2, which contains 50 ppb U. Both isotopes of uranium were detected.
Note that the ThO signal Is smooth (it Is a background peak in the PIMS instrument), whereas the UO
signals show prominent spikes, which are ion bursts produced by individual particles.

CONCLUSIONS

The PIMS technique has been developed to analyze single aerosol particles with minimal
preparation. Our results demonstrate the capability of PIMS to detect trace constituents in
heterogeneous materials, as shown by the detection of U and Th in airborne dust and reagent grade TiO 2 .
Multi-isotope analysis allows measurement of isotope ratios In single particles so that specific elements
can be identified and discriminated from interfering elements by measuring diagnostic isotope ratios.
Moreover, real-time background corrections to the ion burst data can be made. Our development work
has emphasized uranium, partly because of the promising applicability of PIMS to real-time detection of
airborne radioactivity (PIMS can detect uranium at picogram levels without interferences from other
species, e.g., radon and its progeny), and because of the low background in the uranium mass region.
PIMS can measure aerosols either In real-time or off-line as collected aerosol particles. Measurement of
collected samples gives added flexibility as the PIMS instrument need not be near the aerosol source, and
allows samples to be taken from gas volumes too large to be sampled quickly at the PIMS gas inlet flow.

This paper is based on work sponsored by the U.S. Department of Energy, under Contract DE-AC06-
76RLO-1830.
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Airborne Dust at 21000C
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Figure 1. The mass spectrum from I to 300 amu was scanned during the admission of -0.5 mg of
airborne dust (National Institute of Standards and Technology, Standard Reference
Material 1648 -- urban particulates). Oven temperature was 21000C. The three peaks at
-250 amu are ThO, UO, and U0 2 -- masses 248, 254 and 270, respectively.
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Uranium Ion Bursts from Single Particles
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Figure 2. Uranium Ion bursts are shown for 2MU on top (scale on the right) and 235U on the
bottom(scale on the left). Good correlation Is seen between the two isotopes, g 0ng a
235/238 isotopic ratio consistent with the natural value of 0.0072.
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Trace Uranium in TiO2 Particles
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Figure 3. Reagent-grade T10 2 contains 50 ppb of uranium, which Is detectable using PIMS. The
data were taken by admitting TIO 2 into the PIMS Instrument while scanning the magnetic
field across the mass region from 246 to 258 amu. The uranium signals (23WUO at 254
amu, 23SUO at 251 amu) show pulses that are produced by individual particles. In
contrast, the peak at 248 amu (ThO) Is steady, showing that ft is due to background Th in
the PIMS instrument. Approximately -0.1 mg of T10 2 powder was drawn Into the PIMS
Instrument during the scan.
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INTRODUCTION

Appropriately shaped static magnetic fields can be used to trap and

levitate diamagnetic materials.1-6"

The lifting force AI on a small volume of magnetic material Av is given by

-*P
AF _X grad (B2 ) Av (1)2p0

where p, is the magnetic permc.Dility constant of free space, X the magnetic

volume susceptibility (negative for diamagnetic materials), and B the

magnitude of the magnetic induction.

Seveial field configurations can be used to provide the necessary

levitation and centering forces for stable suspension in the Earth's

gravitational field. One example is shown in Figure 1. Although the magnetic

fields themselves are approximately horizontal, the field gradient (and hence

the lifting force) is vertical.
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The advantage of diamagnetic levitation is that it requires neither the

position sensing and feedback circuits needed in active systems, nor the

alternating fields employed in dynamic systems. The necessary fields can be

producedby permanent magnets so that permanent trapping of a particle is

possible in a system which consumes no power.

Because the lifting force per unit volume is constant in a given system at

a given field strength, particles or groups of particles from millimeter to

submicron dimensions can be levitated with equal ease. Figure 2 shows a

relatively large particle of graphite permanently suspended between poles

approximately 2mm apart.

This form of levitation is normally used with graphite or bismuth samples

but is potentially applicable to many other materials, including glasses and

organic solids ard liquids, which exhibit diamagnetic behavior.

TEMPERATURE MEASUREMENT

Because the diamagnetic volume susceptibility X is temperature dependent,

a magnetic levitation system can be used as a temperature-sensitive balance.

The procedure is summarized in Figure 3.

The magnetic induction is first adjusted at ambient temperature T1 , using

an electromagnet or a booster winding on a permanent magnet, to a value B1

which brings the suspended particle to some convenient reference level as

viewed through a microscope. The particle is then allowed to take up the

temperature T2 which is to be measured. In our experiments the heating was by

laser illumination. The particle typically drops in the field of view as the

temperature rises. The magnetic induction is then increased to the value B2

needed to return the particle to the reference mark.

We define x so that

(2)
B2=B 1 (1x)
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We also have, from an extension of equation (1),

mg - (const)XI grad (Ba) - (const) (X2) grad (B ) (3)

where mg is the weight of the particle and X1, X2 the magnetic

susceptibilities at T, and T2 , respectively.

We can define y as a fractional temperature coefficient of susceptibility

so that

X2 - X1 [I+y(T2-T 1 )]. (4)

From (3) we obtain, because the geometry of the system remains unchanged,

2 2
B2/B1 - X1/X2

or, for small changes in x and y,

2x - -y (T2-T1 )

Thus the temperature change above ambient is given by

(T1-Tl) - -2x (5)
y

Values of y are available from Tables. For graphite a typical value is

-8xlO- 4K-1 .

If frequent temperature measurements are required, the vertical scale of

the microscope can be calibrated in terms of temperature. This is done by

recording the vertical positions of the particles after heating but prior to

the field increase and relating then to the subsequently calculated

temperatures. The resulting nlot of vertical position vs. temperature is

typically somewhat nonlinear but quitA reproducible.

RESULTS AND DISCUSSION

This temperature-sensing technique has so far been used primarily on

graphite particles in vacuum using a low-powered laser for heating up to 30K

above ambient. Temperature variations of 1K are easily detected.

133



The method is particularly suited to the measurement of stmall temperature

changes around ambient, in contrast to the more conventional optical methods

used at high temperatur(.s.7.8
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1) Adjust B to bring particle to a
reference level.

2) Heat particle using, for example, a
laser

3) Adjust B to bring particle back to
the reference level. -

Figure 3. Temperature measuring procedure, based on temperature dependence of X,
Vertical movement of particle Is exaggerated for clarity.
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ABSTRACT

Fluorescence detection limits for molecules in solution are historically limited to concentrations of
-10"13 M by solvent background. We are trying to detect single molecules in solution within this limit
by reducing the volume of the sample to the pl range. This is achieved by sampling the solution as
levitated microdroplets about 10 Iam in diameter. With excitation from an argon-ion laser at 514.5
nm, we detect fluorescence photons from glycerol-water droplets containing as few as 11 molecules
of rhodamine-6G. Our present detection limit, due to impurities in the blank determinations, is -0.4
molecules.

We are trying to detect single molecules of rhodamine-6G in levitated (1) glycerine-water droplets
by optical fluorescence. A typical analyte molecule can undergo on the order of 106 excitation-
fluorescence cycles before photolyzing (2). It is fairly easy to collect from 10.3 to 104 of these
photons as counts from a detector. Thus, from 10 to 1000 photocounts should be observable per
molecule, clearly sufficient for single molecule detection. It is the noise in the solvent background
that limits the sensitivity of detection. In our report last year, we described the basic principles of
the measurement technique. Several improvements have been made since then. The more important
of these include changing to a hyperbolic electrodynamic trap for droplet levitation and reduction of
the laser intensity. These two changes reduce the photophoretic displacement of the droplet when
the laser is turned on. Droplets of glycerol-water containing a small quantity of rhodamine-6G dye
are produced by a Uniphoton Systems droplet generator and suspended in the quadrupole trap.
Horizontally polarized light at 514.5 nm from an argon-ion laser is focused on the droplet at the
beginning of a measurement. Elastic scattering from the droplet in the direction of the
photomultiplier is substantially reduced with this arrangement. The laser intensity is 100 W cm'2.
Fluorescence from the droplet is collected by a GRIN lens and 20X microscope lens, focused through
a 0.15 mm aperture, filtered by an interference filter with 26-nm bandwidth at 575 nm and a Coming
3-66 glass filter, and detected by a cooled C31034 photomultiplier. Photocounts are collected by a
gated photon counter and stored on a laboratory computer.

The volume of the trapped droplets is needed to calculate the number of analyte molecules being
observed. We estimate the droplet diameter from a microscopic examination of the droplet at 90
degrees from the laser excitation. Ashkin and Dziedzic (3) have shown that the scattered light in
the far field consists of two main spots, one a reflected ray scattered from the face of the sphere, the
other a refracted ray that emerges tangentially from the opposite edge of the sphere. The two spots
are separated by approximately 1.7 p. The microscope body is extended for these measurements so
that the spot separation can be measured to an accuracy of about 10%.

For greater precision in droplet diameter, the positions of structural resonances in Mie scattering are
measured as the droplet evaporates with fixed laser frequency. The resonances are identified by
matching the experimental curves with calculations made with the Fortran program given by Bohren
and Huffman (4), averaged over the appropriate range of azimuthal angles and the droplet diameter
calculated from the size parameter and the glycerol refractive index..

In a typical measurement, after verifying with the HeNe laser that the particle is centered in the trap,
the photon counters are initiated and the argon laser beam switched on. With a laser intensity of 100
W cm"2, the fluorescence. from the sample or blank decays in about 20 s to background. Mie
scatteaing photons are recorded in a second channel of the photon counter for droplet size
determination. The separation of the reflected and refracted spots is measured visually at the
conclusion of the measurement.
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The data for a pair of experiments on sample and blank of similar size are shown in Fig. 1. The
sample was a 13-Irm droplet of 16-pM concentration of R-6G in glycerol-water, the blank of the same
diameter with no R-6G deliberately added. The upper curve is the detected fluorescence as a
function of time after the laser beam is unblocked. Most of the signal decays in a few seconds as the
R-6G is photolyzed. The signal remaining after about 20 s is believed to be mainly fluorescence from
the filters or the black paint in the trap excited by the elastic scattering from the droplet. The initial
fluorescence from the blank droplet, lower curve, shows a photolyzable component presumably due
to impurities in the solvent. Variations in the size of this component from droplet to droplet limit
the ultimate detection we can achieve.

The results of six determinations, three for droplets with 16-pM concentration of R-6G in glycerol,
and three for blanks, are presented in Table I. The probable number of R-6G molecules in each
sample droplet is calculated from the concentration in glycerol and the measured diameter. All of
the water is assumed to riave evaporated. An average of 340 photocounts per R-6G molecule is
calculated for the three droplets with R-6G. The equivalent concentration of R-6G molecules in the
blank droplets would be 0.5 R-6G pL"' or 0.8 pM. Twice the noise in the integrated blank
photocounts is 140 counts pL-1, equivalent to 0.4 R-6G pL"'. This value can be taken to be our
present detection limit, with the main source of noise being photolyzable impurities in the solvents.

The above results show that detection of a single R-6G molecule should be achievable by this
method. It is the poor reproducibility of the blank determinations that is presently limiting our
sensitivity. Even so, our detection limit of -0.4 molecules is the lowest that has been reported to
date for condensed phase determinations.
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TIME (sec)
Figure 1. Fluorescence vs time for 13- pm sample and blank droplets.

Upper curve, 16-pM sample; lower curve, blank.

Table I. Results for Blank, 16 pM R6G Droplets

Net Photons Droplet #R6G Counts/ #H0(0 Iqtiv.

Counted Volt(LJ Molecules Molecule in Blank .

382 1.2 .. 1.!

1908 11.5 .... 5.6

669 4.2 .-. 2.0

11295 2.6 25 460 --

2631) 1.2 I1 241)

8451 3.0 29 290

average: 341) counts/R6G moleculc

cquivalcnt blank concentratiom: (1.5 f6(;/'Iil. = 0.8 pM

2 x iio'i:c on hIlank: 140 coiunts/lp. = OA4 16(/plI.
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ABSTRACT

We report on the further development and mass spectrometric characterization

of our Smoke-Ion Source. This ion source is capable of generating intense.

continuous beams of both positive and negative cluster ions of metals, metal

oxides, and other relatively high temperature materials. This device is the

result of the marriage of the inert gas condensation method for generating

metal smokes with techniques for injecting electrons directly into expanding

jets. Intense cluster ion beams have been generated from metal smokes of

lead, lithium, sodium, magnesium, and from mixed lithium-magnesium smokes. In

addition, metal oxide cluster ions of lithium and of magnesium have also been

generated. Future studies will focus on mass spectral studies involving new

materials and on probing, via negative ion photoelectron spectroscopy and

photoabsorption experiments, the electronic energy levels of size-selected

cluster ions generated with this source .
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BACKGROUND

We report on the continuing development and characterization of a source

for generating intense, continuous beams of metal and metal oxide cluster

ions. This deviceI is the result of combining the inert gas condensation

method with techniques for injecting electrons directly into expanding jets.

Inert gas conlensation is a proven approach for generating strong beams of

large neuLral clusters comprised of relatively high temperature

materials.2-9 In inert gas condensation cells, an oven evaporates the

material of interest into a bath of cool inert gas. The evaporated material

supersaturates in this cool environment and nucleates to form a dilute smoke

composed of ultrafine particles and clusters. The inert gas, along with its

entrained smoke, then exits the cell through a small aperture into a high

vacuum region where it forms a beam. The injection of low energy electrons

directly into the high density region of supersonic expansions has been shown

to be a highly efficient method for generating beams of both positive and

negative cluster ions.1 0 ' 2

Several investigators had previously generated positive cluster ions

from inert gas condensation cells, usually in the course of mass spectrometric

characterization studies. In each case, this was accomplished well downstream

of the cells' exit apertures by subjecting the neutral cluster beams to either

electron bombardment ionization or to photoionization.4"9 In the present work

however, electrons from a biased filament are injected in a close-coupled

manner directly into the weak jet expansion of the smoke-containing inert gas

as it leaves the condensation cell, allowing the generation of intense beams

of large positive and negative cluster ions. We refer to the unique union of

these two techniques as the Smoke-Ion Source. Below, we describe the Smoke-
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Ion Source along with its associated apparatus, and present the results of

mass spectrometric investigations involving cluster ions of lead, lithium,

sodium, and magnesium; mixed cluster ions of lithium and magnesium; and

cluster ions of lithium oxide and magnesium oxide.

EXPERIMENTAL

A schematic diagram of the Smoke-Ion Source is presented in Figure 1.

The material of interest is evaporated from a heat shielded crucible (capable

of achieving temperatures to 2,300 K) by direct resistive heating. The

assembly containing the crucible is separated from the inert gas condensation

cell by a water-cooled copper box which thermally isolates the cool inert gas

from the high temperature environment of the crucible region . Vapor effusing

from. the crucible enters the condensation cell, which typically contains from

0.5 to 10 torr of helium and can be maintained at constant temperatures

between 77 K and 285 K by a coolant reservoir. The cool inert gas thermally

quenches the vapor, causing supersaturation with subsequent nucleation and

cluster growth. Metal oxide cluster formation is accomplished by doping the

inert gas with a small percentage (0.5-2.5 %) of reactant gas (typically 02).

The condensation cell is coupled to high vacuum by a small (1.0-2.5 mm

diameter) aperture, creating a flow of helium which entrains the clusters and

transports them into the high vacuum region via a weak jet expansion. A

negatively biased hot filament injects low energy electrons into the smoke-

containing helium flow immediately as it exits the aperture. The presence of

axial magnetic fields in the expansion region greatly enhances cluster ion

production. The entire source is electrically floated at either ± 500 V or
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±1 kV with respect to ground potential. This eleL.ron injection configuration

is used to generate both positive and negative cluster ions.

The resulting beam of cluster ions and accompanying neutrals is skimmed

before entering the remaining part of the apparatus. Briefly, this consists

of an ion optical beam line, an ExB mass separator (Wien filter) and a

Faraday cup for ion detection. The Wien filter can be operated at a high

electrostatic field where it achieves normal mass resolution over d limited

mass range, or at a low electrostatic field where it exhibits poor resolution

but over a much larger mass range. The latter mode is particularly useful for

detecting very large cluster ions.

GENERATION OF METAL AND METAL OXIDE CLUSTER IONS

(1) Le.g_•: Cluster ions of lead were generated under two different sets

of source conditions.1 The first set employed a source aperture d~arneter of

1.0 mm, a helium pressure of 6.0 torr maintained at 195 K, and a crucible

temperature of 1,460 K. Figure 2 presents mass spectra for both positive and

negative lead cluster ions recorded under these conditions. In order to

obtain these spectra, the Wien filter was operated in its high mass range

mode. Both spectra exhibit a progression of unresolved cluster ion peaks

ranging from approximately 40-400 atoms per cluster ion, and for both ion

polarities, the intensity maximu,,i in the size distribution corresponds to -200

atoms per cluster ion. Assuming these cluster ions are spherical in shape,

their diameters can be estimated through the expression D = 2 Z113 Rs, where D

is the cluster diameter, Z is the total number of valence electrons in the

cluster, and Rs is the Wigner-Seitz radius of the bulk metal. These lead

cluster ions are estimated to range in size from -15-30 A in diameter with the
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peak of the size distribution at -20 A. In the anion spectrum, an ion current

of 600 pA was observed at this maximum. If average currents of cluster anions

are compareJ, this is about five orders of magnitude more intense than those

available via laser vaporization techniques.13 In the cation mass spectrum, a

series of low mass peaks due to Pb++ and Pb+ was observed in addition to

the high mass distribution. Interestingly. these low mass peaks were absent

in the anion spectrum, suggesting the small lead cluster cations may have

resulted from fragmentation. However, the similarity between the high mass

distributions in the cation and anion spectra may indicate that they reflect

the neutral cluster distribution.

In an effort to explore the source's ability to access different cluster

ion size distributions, a second set of source conditions was selected. This

set utilized a source aperturL diameter of 1.5 mm. a helium pressure of

1.6 torr at 273 K. and a crucible temperature of 1.460 K. Figure 3 shows the

resultant lead cluster anion mass spectrum with the Wien filter operating in

its low mass range mode. A variety of small lead cluster anions was observed

demonstrating the ability to shift the cluster ion size distribution by

manipulating source conditions.

(2) Lithium: Negatively and positively charged clusters of lithium were

generated utilizing a 2.0 mm diameter source aperture. 1.5 torr of lie at

273 K. and a crucible temperature of 1.100 K. Figure 4 presents a typical

mass spectrum of lithium cluster anions generated under these conditions.

This set of source conditions produced lithium cluster ion distributions that

ranged from 650-2.800 atoms per cluster ion (D =30-50 A). The intensity

maximum in the size distribution corre~pondpd to about 1,200 atoms per cluster

ion (D =35 A). By utilizing slightly highrr He pressures in the condensation
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cell (3-5 torr). cluster anions comprised of 11,500 lithium atoms (D =80 A)

have been generated.

(3) Sodium: Cluster anions of sodium were generated utilizing a 2.0 mm

diameter source aperture. 1.9 torr of He at 273 K, and a crucible temperature

of 785 K. Figure 5 presents the mass spectrum of sodium cluster anions

generated using these conditions. A sodium cluster anion distribution that

ranged from 700 (D =35 A) to well beyond 1,750 (D =50 A) atoms per cluster

anion was observed. The intensity maximum in the size distribution

corresponded to about 1.250 atoms per cluster anion (D =45 A).

(4) Maganesium: Cluster anions of magnesium were generated utilizing a

2.0 mm diameter source aperture, 1.2 torr of He at 273 K, and a crucible

temperature of 975 K. The resultant magnesium cluster anion distribution

ranged from 150-850 (D =20-35 A) atoms per cluster anion, with the intensity

maximum in the size distribution at 375 atoms per cluster anion (D =25 A).

(5) Lithium-MaS-nfesLium: Mixed lithium-magnesium cluster anions were

generated by evaporating lithium and magnesium metals from separate chambers

in a single crucible at a temperature of 1,015 K. The evaporation rates per

unit area of each metal were controlled so thdt the ratio of Mg to Li atoms in

precondensed metal vapor would be 3:1. Other source conditions used included

1.2 torr of He maintained at 273 K and a 2.0 mm diameter source aperture. The

mass spectrum of mixed lithium-magnesium cluster anions recorded under these

conditions is presented in Figure 6. The (LixMgy) cluster anions observed

ranged in mass from -2,000 amu to well over -20,000 amu with the intensity

maximum of the mass distribution at -7.000 amu. The ion current at this

maximum measured approximately 1 nA.
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(6) Metal Oxides: Oxides of lithium and magnesium cluster anions were

generated under essentially the same source conditions used to generate pure

metal cluster anions, but a small percentage of 02 was added to the helium

inert gas. In the case of the lithium-oxygen system, 1.5 % 02 in helium was

used in the condensation cell. The resultant mass spectrum, presented in

Figure 7. shows a series of unresolved (LixOy) cluster anions as well as 0

and 02. For the formation of (MgxOy) anions, 1.0 % oxygen in helium was used

in the condensation cell. The resultant mass spectrum, presented in Figure 8,

was recorded with the Wien filter operating in its low mass range mode. Peaks

corresponding to (MgxOy) cluster anions of various stoichiometries are

evident along with 02 and 0 In both cases, the addition of small amounts of

oxygen to the condensation cell dramatically lowered the sizes of the

particles produced in the source.

CONCLUSION

We have shown the Smoke-Ion Source to be a powerful and versatile tool

for generating intense beams of positive and negative cluster ions comprised

of metals and metal oxides. Future experiments with the Smoke-Ion Source fall

into one of two categories. The first category will involve the generation of

cluster ions from additional materials, and these experiments shall primarily

be mass spectrometric in nature. The second category involves probing the

electronic energy levels of the clusters and cluster ions produced by this

source. Negative ion photoelectron spectroscopy performed on size-selected

cluster anions will reveal the ground and low-lying excited electronic state

structure of a cluster anion's corresponding neutral (at the anion geometry).

In addition, photodestruction and photodissociation experiments will be
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performed on size-selected beams of positive and negative cluster ions to

examine Mie-like resonances and other photoabsorption processes in these

systems.
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PRESSURE-DEPENDENT DAMPING AND BROWNIAN MOTION OF A PARTICLE
LEVITATED IN VACUUM

L. D. Hinkle*, B. R. F. Kendall
Department of Physics,

The Pennsylvania State University
University Park, PA 16a02

A novel method of levitation, using an actively controlled electric field,
launches, captures, and stably suspends a microscopic (-15 Am) particle in
high vacuum. While held to within one diameter in the vertical direction, the
particle is allowed to oscillate nearly freely in the horizontal plane under
the influence of a central restoring force. The damping of horizontal
oscillations was measured over the pressure range from 10-2 Torr to 10-8 Torr.
The dampint was observed to be proportional to pressure down to less than 10-8
Torr, where residual (pressure-independent) damping became significant. An
absolute high vacuum gauge based on the pressure-dependent damping observed
with this apparatus could operate linearly throughout at least a six decade
range. A prototype gauge design is suggested.

The Brownian motion of the particle was observed and quantified by
successive measurements of the oscillation amplitude in a horizontal axis.
Brownian motion was exhibited throughout the pressure range from 10-3 Torr to
7x10 6- Torr. The upper limit of pressure was determined by the gauging on the
vacuum system. At pressures below 7x10-6 Torr, the Brownian motion was
obscured by residual (pressure-independent) fluctuations in amplitude.

The statistical behavior of the oscillation amplitude is consistent with
the theoretical prediction for Brownian motion in a low pressure gas. These
measurements constitute the first evidence of Brownian motion of a levitated
particle below 1 Torr. In addition to the experimental verification of low
pressure Brownian motion theory, this work serves as an important step in the
development of a standardizing high vacuum gauge.

*Current address: MKS Instruments, Andover, MA 01810

Related Publications

1. B. R. F. Kendall, Vacuum 20, 540 (1970).
2. R. S. Butler. B. R. F. Kendall, and S. M. Rossnagel, Vacuum 2., 589 (1977)
3. B. R. F. Kendall, M. F. Vollero and L. D. Hinkle, J. Vac. Sci. Technol.

A5, 2458 (1987).
4. B. R. F. Kendall, D. J. Manzi, L. D. Hinkle, and M. F. Vollero, J. Vac.

Sci. Technol. A5, 3224 (1987).
5. L. D. Hinkle, "Brownian Motion in Low-Pressure Gas: The Behavior of

Particles Levitated in a Vacuum," Ph.D. Thesis, The Pennsylvania State
University, 1989.

163



BLANK

164



MODE IDENTIFICATION OF LINEAR AND NONLINEAR OPTICAL

PROCESSES IN MICRO-DROPLETS

H.-B. LIN, J.D. EVERSOLE*, A.L. HUSTON, and AJ. CAMPILLO

U.S. Naval Research Laboratory,
Optical Sciences Division, code 6546

Washington, D.C. 20375 U. S. A.

ABSTRACT

A recently developed aerosol generator provides 10-80 gm droplets
sufficiently stable and monodisperse to allow identification and detailed
analysis of experimental results from stimulated optical processes,
cavity quantum electrodynamic effects, and cw nonlinear optical
phenomena. We report here results of our study on double resonance
stimulated Raman scattering and cavity quantum electrodynamic
enhanced spontaneous and stimulated emission in 20-mm ethanol
droplets.

INTRODUCTION

There has recently been a great deal of interest in the optical behavior
of microspheres in the 10 to 100 gm diameter size range. Total internal
refraction in transparent droplets of this size allow them to act as high Q
cavities in the presence of light. Lorenz-Mie scattering theory for the
case of a sphere predicts a dense spectrum of such resonances spaced
throughout the visible. Since these resonances are a function of particle
size, shape and index of refraction, they are often referred to as
morphology dependent resonances (MDRs) in the literature. In general,
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resonances are characterized by a mode number, n, and order number,
1, and both TE and TM mode resonances exist. These modes provide the
necessary feedback mechanism for coherent processes such as
stimulated Raman scattering (SRS), lasing, and other coherent nonlinear
optical mixing. The MDRs also account for the ripple structure observed
in elastic light scattering as well as sharp spectral peaks observed in
fluorescence, spontaneous Raman, and radiation pressure. They may
also lead to strong cavity quantum electrodynamic effects, e.g.,
fluorescence and absorption rate enhancement and inhibition.

Recently, we have developea a special purpose vibrating orifice droplet
generator which has achieved a short term monodispersity with
instantaneous diameter fluctuation of less than 2 x 10-5 and a long term
drift rate of 10-5/min. It will be demonstrated that this degree of size
precision is sufficient to correctly identify particular MDRs that are
observed in experimental fluorescence, spontaneous Raman, and
stimulated processes. Mode identification is usually very difficult
because of uncertainties in particle size and index of refraction and the
density of modes. Our development has allowed determination of both
droplet size and refractive index and, subsequently, the first
unambiguous assignment of specific modes observeL. in stimulated
processes. In this paper, we report the mode identification of MDRs for
the double resonance stimulated Raman scattering case and the
spontaneous and stimulated process of R6G dye molecules in 20-jim
ethanol microdroplets.

VARIATIONAL DROPLET SIZE SPECrROSCOPY

The droplet source is a modified Berglund-Liu vibrating orifice aerosol
generator (VOAG). Figure 1 shows the essential components of the
highly monodisperse vibrating aerosol generator and the optical
configuration for sizing. Sample liquid is direct pressure fed to a 10-Am
vibrating orifice by the retained pressure of a 40-liter ballast tank pre-
filled to nominally 30 psi with N2 gas. Size stability was achieved
through the use of a programmable frequency synthesizer (HP3335A)
to drive the orifice. Droplet size determination was made possible by
ramping the VOAG frequency to induce a controlled size variation while
simultaneously recording the elastic light scattering measurements from
either a He-Ne or excitation laser. The frea -ncy synthesizer is
programmed to sweep between two operat frequencies of the
vibrating orifice. As the frequency chang( .ne scattering light displays
a variational "frequency spectrum" (see Fig.-•) due to induced size
changes that has similar features to those displayed by wavelength
spectra. Indeed, both radius and wavelength spectra are simple
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Fig.l Schematic of the experimental apparatus.
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Fig.2 Variational size elastic scattering spectra. (a) is
an ethanol spectrum obtained by ramping the
orifice frequency from 190.0 to 250.0 kHz at
632.8 tnm. (b) is calculated from Lorenz-Mie
theory assuming an index of refraction of 1.362.
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Fig.3 Elastic scattering test of the size stability of a
typical monodisperse aerosol stream. Time
proceeds from right to left. The size of the
droplets has been adjusted at the right by
setting the vibrating orifice frequency to bring a
morphology dependent resonance into
coincidence with a 632.8 nm laser.The minimal
decrease in scattering intensity after 30 minutes,
corresponding to a droplet size drift of only 1
part in 105/min., allows considerable confidence
to be placed in the subsequent MDR assignments.

transformations of each other and of size parameter. A typical 632.8
nm elastic scattering pattern obtained while ramping the frequency of
the VOAG vibrating orifice is shown in Fig. 2(a). Fig. 2(b) shows the
scattered light spectrum of a homogeneous sphere calculated from
Lorenz-Mie theory. Matching computed spectra to the observed spectra
was accomplished by iteration of the input parameters over their
respective ranges of uncertainty or experimental error.

In an effort to quantify the drift in the position of features, the
scattering curve displayed in Fig. 3 was taken. Time proceeds from
right to left. Initially, the orifice frequency is ramped over a 20 kHz
range and the precise frequency noted of the sharp feature indicated by
the arrow in the figure. At the end of the scan, this frequency was
imposed on the vibrating orifice, resulting in the droplet being forced
into resonance with a TE6 mode having a Q of 3x10 3. The orifice
frequency is then held constant as a test of the size drift. After 30
minutes, the scattering is still 90% of its peak height, implying an
experimentally observed size drift of 1 part in 105/rain. Superimposed
on the drift are several types of short term fluctuations.
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DOUBLE RESONANCE STIMULATED RAMAN SCATWERING

Since our VOAG permits the diameter of a linear stream of
monodisperse droplets to be varied in a predetermined manner and,
when desired, to force the droplet into resonance with a fixed frequency
input beam, it allows us to to maintain an input resonance condition for
the study of SRS in a controlled and repeatable way. By ramping the
frequency of the vibrating. orifice and monitoring the total SRS output

(a)

(c)

U V

225 230 235 240

ORIFICE FREQUENCY (kHz)
Fig.4 Variational size SRS spectra obtained using a

high repetition rate Q-switched and mode-locked
532 nm source having intensities of (a) 0.3
GW/cm 2, (b) 0.75 GW/cm 2 and (c) 1.5 GW/cm 2

and a frequency ramped VOAG. The peaks
correspond to input resonances at 532 nm that
are normally hidden in elastic scattering.
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Fig.5 (a) The 532 nm elastic scattering spectrum is

shown with the corresponding calculated MDR
placement. (b) is all MDRs of order I through 7.
Arrows up (down) refer to TE (TM) modes. The
variational size SRS spectra of Fig.4-(b) is
reproduced in (c). The observed peaks align well
with the calculated placement of TM2, TE2, and
TE3 modes.

intensity, we are able to generate novel variational size spectra of SRS
showing many input resonances (see Fig. 4 ) which are not observed in
elastic scattering. Figure 4 shows three such spectra of SRS output
versus orifice frequency (droplet size) taken sequentially with
increasing pump beam intensity (from top to bottom). As shown in Fig.
5, simultaneous elastic scattering measurements during size ramping
provided a fiducial spectrum marking certain resonance positions and
allowing unambiguous identification of the participating input modes.
SRS spectra (Fig. 5(c)) display resonances corresponding to narrow low
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order ( - 2 to 4) modes in a size range (refer to Fig. 5(b))where broader
I - 5 and 6 modes dominate elastic scattering (Fig. 5(a)). Our mode
identification is consistent with a simple physical picture in which the
highest Q modes (I - 2) will exhibit the lowest threshold intensities, as
we observe.

CAVITY QUANTUM EL-CMRODYNAMIC (QED) ENHANCEMENT

The capability of unambiguous identification of the various cavity
modes enables quantitative study of QED cavity enhanced effects in a
fluorescent droplet, since depending on what mode they correspond to,
resonances will have different Q values, mode volumes, degeneracies
and emission enhancements. Droplets of a constant size and containing
a low concentration ( -10-! M) of Rhodamine 6G dye were directmd
through a focused 514.5 nm cw laser beam. The fluorescence from the
droplets was then detected by a photomultiplier and scanning
monochromator. Figure 6 shows typical resulting fluorescing spectra
and also mode assignments made on the basis of concurrent elastic
scattering measurements as previously described. Mode lifetimes, or Q
values calculated from Lorenz-Mie theory are found to be consistent
with observed fluorescence linewidths for the experimentally
resolvable I - 4 modes. Typical predicted and measured values ranged
from 103 for I - 4 modes to 107 for I - 1 modes. High quantum
efficiency fluorescing dyes have emission bands so broad that they
encompass regions of both enhanced and inhibited cavity emission.
Mode and energy conservation arguments lead to the interpretation
that droplet fluorescence spectra (see Fig. 6) mimic plots of the cavity
modulated density of states (or alternatively, the A or B coefficient) vs
wavelength. Both calculated and measured linewidths confirmed that
Q's of only 103 were sufficient to observe sizeable enhancements in the
A coefficient.

Lasing was observed to occur at very low pumping thresholds in this
study. Modes of I - 1 near the peak of the fluorescence band showed a
nonlinear intensity dependence even at the lowest pumping levels.
Figure 7 shows fluorescent intensity for three pump intensities
(increasing from bottom to top). Comparison of calculated Q values and
the measured onset of lasing for the I - 3 modes revealed that the gain
was typically enhanced by 103. This is not a subtle effect whose
possible misinterpretation is subject to small experimental errors. Note
that even if all R6G molecules in a typical droplet were assumed excited
at peak pump intensities, the calculated gain using the conventional R6G
cross-section (ca. 2x10-16 cm 2) would still be below threshold for certain
l - 3 and 4 modes by factors of 10 and 100, respectively. The presence
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Fig.6 Fluorescence spectrum observed from R6G in
ethanol droplets. Spectral peaks Correlate well
with predicted spherical cavity resonance
wavelengths. Arrows up(down) refer to TE(TM)
modes.

z

0

WAVE NUMBER(c)

Fig.7 Nonlinear intensity dependence of emission
showing presence of lasing pumping intensities
vary from 360 (lower trace) to 600 W/cm2

(upper trace).

of lasing in these modes can only be explained by cavity QED
enhancement.
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ABSTRACT

Recent advances in an aerosol generation technique with droplet
diameters from 10 to 80 micrometers permit the precise
identification of optical resonance mode features as a function of size
parameter. In particular, fluorescence and lasing in dye-doped
spherical particles of this size range, although previously observed,
can now be analyzed and spectral features assigned to specific
spherical cavity modes. Such assignments provide insight to the
mechanisms of droplet optics and permits the beginning of a general
theory of droplet lasing.

Introduction

When a transparent droplet or spheroidal particle which

contains a low concentration of dye is illuminated in the dye
absorption spectral region, one might naively expect a fluoresence
spectrum from the droplet which mimics the spectrum of bulk
solutions under similar external conditions. However, as originally
reported by Chang and co-workers1 , such particle spectra actually

display relatively fine structure superimposed on the broad
fluorescence band, consisting of narrow peaks of varying height. In
that paper it was also speculated that the fluorescence peaks were
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Figure 1. Typical fluorescence spectra from 14gm diameter droplets
of ethanol/R6G excited with a cw Ar+ 5 14.Snm laser. Laser pump
intensity is increased by - 2X for each spectrum from bottom to top.

caused by morphology dependent resonances (MDR's) which are
readily predicted and observed features in elastic scattering from
such particles. In the intervening decade, a number of papers have
reported observation of individual particle fluoresence and, more
recently, lasing. To illustrate the richness and complexity of single
particle fluoresence, Fig. 1 shows typical spectra, recently obtained
from -14 micrometer diameter ethanol droplets doped with
rhodamine 60, and pumped with a cw Ar+ laser. Three spectra are
displayed showing the effect of increasing pump intensity (from
bottom to top) with all other conditions held constant. The
connection between elastic scattering MDR's, and such fluorescence
structure, although widely accepted, has not been previously
demonstrated conclusively. For the special ca~se of a spherical
particle, MDR's are the resonances which occur in the Lorenz-Mie
partial-wave expansion of the internal and scattered electromagnetic
fields and are also referred to as spherical cavity modes. The
remainder of this paper will be divided into three parts: (1) a brief
description of spherical cavity modes, (2) an overview of the general
experimental technique, and (3) analysis and discussion of

experimental results.
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Spherical Cavity Modes

Optical properties of spheres are conveniently described in
terms of the dimensionless size pararmeter x = 21ra/IX. where a is the
sphere radius and X is the optical wavelength. The only other
physical parameter necessary to desribe the particle is the index of
refraction m which may be complex to include absorption. Although
a geometric optics representation is not strictly appropriate for
particles in this size range (-10 < x < -200), physical insight is gained
by imagining a ray which is just captured at grazing incidence by a
sphere. 2  The angle of the ray interior to the sphere is therefore the
critical angle, and at each successive encounter with the sphere-air
interface the ray is totally internally reflected. If, after a number of
bounces, the ray folds back on itself in phase then it constitutes a
standing wave or cavity resonance mode similar to wave guides.
While this model is approximate, it immediately suggests two aspects

that are accurate: (1) that different resonances may be designated by
an integer (number of bounces) and (2) that the intensity associated
with a resonance should be concentrated near the surface of the
particle rather than its center.

A complete background and description of cavity modes, even
for just the case of a perfect spherical boundry, is well beyond the
scope of this paper (an excellent review is provided by Benner and
Hill 3). To briefly summarize the spherical case, the field equations
are separable resulting in a general series solution for the electric
and magnetic compontents, each teria of which is the product of a
Ricatti-Bessel function of the radial variable, a spherical harmonic
function of the two angular variables, and an expansion coefficient
determined by the boundry conditions. 4-6 In rigorous terms, cavity
mode resonances occur whenever the real part of the denominator of
the partial-wave expansion coefficients becomes zero. While this
analysis originated from consideration of plane wave elastic
scattering, it can be shown (for examples, see refs. 7-9) that the
denominators of the expansion coefficients for generalized optical
fields (including point dipole radiators interior to the sphere) have
the same zeros as those of the familiar cn and dn (or an and bn)
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Figure 2. Calculated radial distributions of relative angle-averaged

intensities for 4 different TE modes are plotted.

elastic scattering coefficients. Here n is an integer denoting that

term of the expansion which multiplies the appropriate spherical
Bessel function of order n. Cavity modes are either TM or TE in

character and are designated by two integers: n and 1. In physical

terms c T a circumferential standing wave, n represents the number

of maxiina in the wave as the angular varible 0 (the scattering angle

between the z axis an the radial vector) ranges between 0 and C

radians, while I is the number of radial maxima. Figure 2 illustrates

calculated relative intensities (integrated over the angular
coordinates) for four different modes of a sphere with a = 7.34 ýtm

and m - 1.362 as a function of the radial coordinate (R). These

modes illustrate the dependence of the intensity distribution over 1
and R, and show that virtually all of the intensity of the mode is

concentrated near the circumference of the droplet, but moves

further towards the interior as the number of radial maxima, 1,
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becomes larger. These four modes all occur for values of x close to

each other (-73.55 ± 0.15).

Experimental Technique

In these experiments monodisperse aerosol droplets were

generated using a modified Berglund-Liu vibrating orifice aerosol

generator(VOAG) 1O recently described by Lin - all 1. This is a well-

established aerosol generstion technique who. basic principles are

schematically shown in Fig. 3. Constancy in the droplet size D is

determined by the stability of the fluid flow rate F, and of the orfice

vibration frequency f. Improvements in the stabiliity and precision

of these two experimental parameters has lead to dramatic reduction

in the drop-to-drop size variation in the droplet stream. As

illutrated by Fig. 4. liquid ethanol sample is direct pressure fed to a

10-gtm vibrating orifice by the retained pressure of a 40 1 ballast

tank pre-filled to nominally 30 psi with N2 gas. Size stability

(instantaneous size fluctuations of less than 3 parts in 105 and a size

drift of less than one part in 105/minute) 1 1 was achieved through

the use of a frequency synthesizer (HP3335A) to drive the

Vibrating orifice

113
D - (6F/n•t)

" .D = Droplet diameter

F = Liquid flow rate

f = Frequency of
\ .; ,vibrating orifice

OplimurM S17e Range

80 It m diameter

Figure 3. Schematic repre'erwrttion of the operation of the
vibrating orifice aerosol generator

177



PRESSURE
GAUG PROGRAMMABLE

FREQUENCY

REGULATED SYNTHESIZER
N2 GAS

"Q7] " LIQUID I INE TO "SQUARýE
RESERVOIR WAVE DRIVERI

SFILTER

VIBRATING ORIFICE
GENERATOR

BALLASTEAM STOP
RESERVOIR DROPLETS

-4D~~DETECTOR

Figure 4. Schematic drawing of the experimental apparatus.

piezoelectric transducer (PZT) mounted in the orifice. Droplet size
determination was made possible by ramping the VOAG frequency to
induce a controlled size variation while simultaneously recording
elastic light scattering measurements. Elastic scattering from the
particles was observed at an angle near 900 using both He-Ne (632.8
nm) and cw Ar+ (514.5 nm) laser light as probes. The frequency

synthesizer was typically programmed to sweep between two
operating frequencies of the vibrating orifice and the elastic
scattered light was detected via photomultiplier and displayed as a
function of VOAG frequency using an x-y recorder (see, for example,
Figure 5(a)). The resulting variational frequency spectrum, due to
induced size changes, has features similar to those displayed by
wavelength spectra. Elastic scattering spectra such as these provide
unique fingerprints of the droplet morphology and allow both a and
m to be determined by comparing the experimental curve to Lorenz-
Mie theory. The structure shown in the elastic scatterint' spectra are
the original MDR's discussed earlier. Such spectra can be calculated
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Figure 5. Elastic scattering "size spectra" are plotted as a function of the
vibrating orifice frequency from 500 to 300 kHz. The upper spectrum is
experimental data obtained with 514.5 nm light at a scattering angle near 900.
the lower spectrum was calculated from Lorenz-Mie theory for 0 - 90.80 and m
- 1.364.
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as a function of x for given m and 0, and then plotted versus a for a
fixed (laser) X.12,13 Additionally, using the relations shown in Fig. 3

(where D = 2a), the scattered light intensity can be plotted as a
function of orifice frequency for direct comparison to the
experimental results as shown in Fig. 5(b). The procedure for
matching the computed spectra to the data is basically iterative and

somewhat tedious since the complex structure in the spectrum is
quite sensitive to small changes in the input parameters m and 0. A

detailed description of the matching procedure is provided
elsewhere. 13  It should be noted here that precise determination of
resonance positions and the refractive index is limited at some point
by other considerations. Eventually one part of the spectrum can be
better matched only by sacrificing the quality of another part.
Every feature in the experimental spectrum is accounted for in the
computational plot over an extensive range in f (200 kHz). Although
differences in relative heights do exist the overall match is
optimized. More importantly, our objective is not to determine
absolute droplet size and refractive index to the highest possible
accruacy, but to assign spectral features, and for this task there is
ample information available in the experimental data, as will be
shown.

Results and Discussion

Figure 5(a) shows elastic scattering for a fixed wavelength and angle
as the droplet size is monotonically increased via changing the orifice
frequency. Within minutes of the collection of the elastic scattering

data, the orifice frequency was tuned to a value which makes the
excitation laser light close to an input resonance, and fluorescence
data was collected using - f 8 optics centered at 90' to the incident

laser beam, dispersed by a scanning double monochromator and
detected with a photomultiplier tube. Figures 1 and 6 show
examples of the observed R6G fluoresence spectrum recorded as a
function of wavenumber. Since the fixed size of the droplets was
known from analysis of the elastic scattering, it is possible to

180



compute the position of all spherical cavity modes as a function of
wavenumber. Figure 6 is therefore a composite plot showing both
experimental fluorescence spectra and computed cavity mode
resonance postions. Since the spectra are so rich in detail the Fig. 6
has been split into two parts (a) and (b) showing the longer and
shorter wavelength regions of the total spectrum respectively. The
two experimental fluoresence spectra plotted with a vertical offset
were taken consecutively with all conditions held constant except the
laser excitation intensity was increased for the second (upper)
spectrum. These spectra took about 40 minutes to record, and aside
from where an occasional glitch or temporary fluctuation in the
droplet stream occurs, the two spectra exactly reproduce each others'
features within experimental resolution. This illustrates the
stability and reproducibility of the experimental arrangement. It
should be noted that the three fluorescence lines which leave the top
of the figure for the upper spectrum have increased much more than
the = 2.5 X increase in the pump intensity and are in fact lasing.

Many other lines are clearly close to threshold.
Because of the large number of possible cavity modes, it was

necessary to plot their positions in a psuedo-3-dimensional
horizontal plane with the experimental spectra in a vertical back
plane. Modes with the same I value (mode order) are plotted as
horizontal rows across this plane, with I increasing as one moves

away from the vertical back-plane. Positions of TE (TM) modes are
indicated by arrows pointing up (down). Broken lines are used to
indicate the projection of the mode position onto the vertical back-
plane with a slightly different style for each of the 4 different orders
to help distinguish them. It is readily apparent that the projected
positions of the modes line up quite well with the peaks of the
experimental spectra. All of the fluorescence peaks expressed in the
longer wavelength region (Fig. 6(a)) are assignable to modes of
orders 1-3. Orders 4 and larger do not participate in the fluoresence
in this region. However, as the spectra move towards larger
wavenumber (Fig 6(b)) order 4 resonances begin to appear, weakly
at first, but increasing in strength as the size parameter increases.
Additionally, the order 4 resonances display a wider line width than
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Figure 6(a) Shows the long wavelength region of the ethanol/R6G
droplets fluorescence. Two experimental spectra shown in the upper
part of the figure were taken under identical conditions except that the
excitation intensity was changed. Calculated cavity mode positions are
indicated in horizontal plane of the 3-D plot and then projected into the
vertical plane of the spectra for comparison.

the other modes. Lower order modes have high Q's and the
fluorescence lines displayed are essentially determined by the
instrumental resolution. However, mode Q's decrease with
increasing mode order, and the order four modes have linewidths
large enough to be experimentally resolved. Order 1 modes should
have the highest Q's, and therefore are the first to cross the lasing
threshold as the pump intensity was increased. However, they
begin to drop out as the spectrum moves toward shorter
wavelengths. This is understood in terms of the increasing
absorption occurring as the absorption band of the R6G dye is
approached. Although the total absorption is small (typical dye
concentration was about 10-5 molar), it is sufficient to make the first
order modes disappear.

Time does not permit further discussion of the implications of
the fluorescence data for the feedback and gain of the lasing modes,
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Figure 6(b) Shows the shorter wavelength region of the ethanol/R6Gdroplets. As in Fig. 6(a) the two experimental spectra are continued inthe upper part of the figure while the calculated cavity mode positionsare indicated in horizontal plane of the 3-D plot and then projected intothe vertical plane of the spectra for comparison.

or the QED enhancement of the absorption and emmision that takesplace in confined structures such as these droplets. Instead, weclose by addressing the issue of correct mode assignment of thefluorescence peaks. The exercise of matching the elastic scattering isa valid technique, which has been and can be applied to manyexperiments involving the optical properties of droplets. However,in the case of fluorescence data it is almost redundant. By cataloging
the wavenumbers at which the fluorescent peaks occur, a set ofnumbers is extracted for which one can now attempt matchingcalculated mode positions. If the number of peaks is large, then theprobability of having more than one possible assignment becomessmall. For the longest spectrum recorded in this experiment, 104distinct peaks were observed. Uncertainties in the refractive indexor droplet size will change the scale by which the mode positions areconverted to wavenumber. Therefore one can iterate on these twoparameters to generate sets of mode positions and then compare
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those to the peak data set by essentially performing a cross-
correlation of the calculated set with the measured set. Figure 7

shows a 3-D plot of the cross-correlation of the 104 experimental
fluorescence peaks with computed mode positions. In the horizontal

plane the mode positions are either incrementally translated (to

account for errors in absolute wavelength calibration), or

incrementally compressed (by changing the computational droplet

size). The compression is denoted in the figure as the Delta R

coordinate, while the translation is denoted as the Delta X coordinate.
Over a broad range of possible values only one major peak appears

which corresponds to the mode assignments indicated in Fig. 6. This

confirms that the mode assignment is unique and therefore correct.

loo

0..

Figure 7 Crosscorrelation of a very large number of coomputed possible
mode assignments with the measured fluosescence peaks results in only one
possible assignment of cavity modes for the experimental data.
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ABSTRACT

Heterogeneous reactions on the surfaces of polar stratospheric clouds (PSCs) over
Antarctica are now recognized to play a central role in the photochemical mechanism responsible
for the dramatic yearly occurrence of the Antarctic ozone 'hole' [Solomon, 1988]. PSCs are
characterized as type I or type II depending on their composition. Type II PSCs, composed of
water ice, form only at very low temperatures in the stratosphere. Type I PSCs are much more

abundant and their composition and chemical properties have been the subject of intensive
research. Field measurements [Fahey er al., 1989], laboratory studies [Hanson and Mauersberger,
1988a,b] and model calculations [Turco et al., 1989] have suggested that type I PSCs are nitric

acid trihydrate (NAT) crystals (or solid solutions of nitric acid in ice) which form in the
stratosphere at temperatures 5-7 'C higher than the ice frost point. Because they can form at
warmer temperatures, type I PSCs may also form in the Arctic stratosphere where temperatures are

rarely low enough to support pure ice formation. Heterogeneous reactions on NAT may therefore
be relevant for considerations of Arctic as well as Antarctic ozone.
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Several recent studies have shown that reactions 1-4 occur readily on laboratory ice

surfaces representative of type IH PSCs [Molina et al., 1987; Tolbert et al., 1987, 1988; Leu,

1988a,b]:

CIONO2 + H20 -+ HOCI + HNO3  I

CIONO2 + HCI - C12 + HNO3 2

N205 + HCI -+ CINO2 + HNO3  3

N205 + H20 -4 2 HNO3 4

Reactions 1-3 convert the stable chlorine reservoir species (CIONO2 and HCI) into more active

forms (HOCI, C12, ClNO2) which photolyze readily to provide Cl for catalytic ozone destruction

cycles. All of the above heterogeneous reactions result in the formation of nitric acid. Laboratory

studies on ice surfaces at -85 *C have shown that the nitric acid formed as a result of reactions 1-4

is retained in the condensed phase.

Removal of nitric acid from the stratosphere, so-called denitrification, is required for

efficient ozone destruction. Denitrification prevents the sequestering of active chlorine via

reaction 5:

CIO + N02 + M -+ CIONO2 + M 5

Severe denitrification has been observed in both the Antarctic and Arctic stratospheres. There are

numerous theories of how this observed denitrification occurs [Toon et at., 1990]. All theories

require that HNO 3 be permanently removed via sedimentation of PSCs, but the theories differ in
whether type I or type U PSCs are involved. For example, slow cooling may favor preferential

growth of a relatively small number of NAT particles, which may then grow large enough to fall

out of the stratosphere [Salawitch et al., 1989]. Another denitrification mechanism [Wofsy et a!,

1990] suggests that falling ice from higher altitudes may sequester HNO3, forming a layer of NAT
on the ice. This NAT coating may prevent ice from evaporation even when the temperature is

above the ice frost point. This scenario allows HNO3 to be permanently removed from certain
regions of the stratosphere without requiring the formation of large pure NAT particles.

To better understand both the formation of PSCs and the role of PSCs in denitrification,

fundamental investigations of the interactions between ice and nitric acid under stratospheric
conditions are needed. We have used FTIR surface studies to probe the microphysical properties

of NAT and ice films representative of type I and II PSCs, respectively. The infrared spectra of

ice, NAT and nitric acid monohydrate (NAM) are obtained by dosing calibrated mixtures of water
and nitric acid onto a low temperature support. The infrared spectra obtained for ice, NAT and
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NAM at -90 'C are shown in Figure 1. These spectra are used to monitor growth, transformation,

and evaporation of ice and NAT films under a variety of conditions.

Under conditions approaching those found in the stratosphere, NAT is observed to grow at

temperatures around 5 *C higher than the ice frost point. The infrared spectra obtained while

cooling the support from -60 IC to -90 0C in the presence of HNO3 and excess H20 are shown in

Figure 2. The spectra shown in parts a-d are separated by 87 second intervals, or approximately

3 IC intervals. The onset of film growth begins near -77 0C with a spectrum resembling that of

NAT (part a). The characteristic NAT spectrum with a single peak for NO3Y at 1384 cm-1 is clearly

evident by -80 IC (part b), well before ice growth begins. As the temperature is reduced below

-83 *C (part c), ice growth starts to occur and by -86 *C (part d), ice growth overwhelms NAT

growth. This general observation of NAT growth before ice growth is in agreement with the

conclusions drawn by Hanson and Mauersberger [1988a,b] from vapor pressure studies of ice and

NAT solids.

Because NAT forms at warmer temperatures than ice under stratospheric conditions,

heterogeneous reactions 1-4 may be imporant on NAT particles in the atmosphere. To compare the

reactivity on type I vs. type I1 PSCs, we are performing laboratory studies of the reaction

efficiencies on ice and nitric acid/ice surfaces. Recent work has focused on reaction 4 where

measurements were made of the uptake efficiency for N2 0 5 on model PSC surfaces. The uptake

efficiency, y, is defined by equation 6:

# reactant molecules lost to surface (molec/cm 2s)

# gas-surface collisions (coll/cm 2s) 6

Laboratory measurements of the uptake efficiency for N205 on ice and NAT surfaces are

shown in Figure 3. Overall, N20 5 appears to be somewhat less reactive on NAT than,- 'I ice.

However, while y for N205 on NAT is constant in time, y on ice varies considerably over the same

time period. We interpret the slow rise in y for N20 5 on ice as being due to an acid-catalyzed

surface reaction. The slow fall in y at longer times is interpreted as being due to slow convers;on

of the top surface ice layers into layers of NAT due to the reaction. The complex reactivity

observed for N20 5 suggests that the details of surface structure and composition may be quite

important in determining the overall reaction efficiencies for heterogeneous processes on PSCs.

Future work will include FFIR studies of the condensed species during heterogeneous reactions to

address the complex relationship between the structure and reactivity of PSC surfaces.
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In this paper we consider the problem of the detailed description of an exploding

droplet. We consider equations describing the conservation of mass, momentum, and

energy coupled by an equation of state, droplet

1 INTRODUCTION

We use this concept of a material derivative and fluxes of mass, momentum, kinetic

energy, internal energy, temperature, and radiation to express the conservation of mass,

momentum, and energy in a droplet irradiated by a high energy source. Initially there are

more dependent variables than there are equations. However, these equations are coupled

by an equation of state which enables one to develop a semigroup formulation which will

predict pressure, density, velocity, and temperature distributions in the interior of the

droplet.

The material derivative of a function f is defined by

Df af al ax af ay af az
-b- = -at + T F+ Tay Ft + z at

Thus, the material derivative is, if we define,

- ax... ay zV= _ +-C + C, (1.2)

given by
D a
T- = T + (6" grad) (1.3)

where t is the velocity of a point in the fluid.

We assume that the droplet material is bianisotropic, a material more general than a

chiral material. The Maxwell equations are, for time harmonic radiation, given by

curl(E) = -iw=H -5 (1.4)

and

curl = (iwf + cE±H (1.5)
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The radiation source term which drives the droplet explosion is given by

(a) Q =

(1/2)Re { (iwt + =)E +

ff. (iw=A•'I) + F. (•. E')+

Xan ("1c. I .gj,°.,.-,° I'} (1.6)

where if all is the surface containing the impedance sheet, then

fn xanas I Etangentiai 12 dv = a I Etangentiai 12 dA (1.7)

is the characteristic function of the surface supporting the impedance sheet. We consider

non plane wave sources such as tightly focused laser beams interacting with droplets ([13],

[45], [14], [33], [7], [6]) and use the energy densities to as a source term in the energy

equation to determine the future state of the droplet.

2 Continuity Equation
Assuming that in the droplet interior that the rate at which mass is created or destroyed

is given by QM and that the flux of mass across a surface is given by pf" we see that

•-9 + div(pvj = QM (2.1)

or if QM = 0 that

div(pv -ap (2.2)

3 Momentum Equation
In this section we derive the conservation of momentum by equating the rate of change

of momentum to the work done by the fluid pressure and the viscous forces and the body

forces and the flux of momentum across the boundaries of test volumes. We define the

velocity as

V" = ,. + VF', + W• (3.1)
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An important identity involving the dyadic product of two vectors A and A is

div(AA) = div(v)A + (A. grad)B (3.2)

The momentum flux is the dyad pV1-" and using the concept of conservation of mass or

equation (2.2) and equation (3.2) we see that

div(pv) = div(pv) + p(V. grad)i

Lp p(V. grad)if (3.3)
at

If p is the pressure, then the total stress tensor IT is given by

11 = -PR*.I= + FAYv + FF) + 7 (3.4)

The viscous stress tensor is given, using equation (3.1) for velocity, by the rule,

198



(2a o) e, .)2(0ax ax ay,,.)
2(aa a,8 +T )

( v + Og + 8z . (3+

ay ay (3.e)(8w\ 2 , (Ot v + w\

(au • +2 -s-() -awe

pZ T- grdX p T a y,( ) (3.e)

D 2 ,( _v O w)

_2,,(au 8v OwN

2,0 ea + ae+ w (3.5)

We have seen that the total stress tensor, equation (3.4) is given in terms of the pressure

p and the viscous stress (3.5). The momentum equation is given by

a,~v = -div(p5VV)

pf + div(11T) (3.6)

Using equation (3.3) we see that equation (3.6) and equations (3.4) and (3.5) we see that

(96

Dt pp

pf - grad(p) + div(=r) (3.7)

Using the concept of material derivative, equation (1.1) and assuming that fis the zero

vector, equation (3.7) reduces to

Dt I- -grad(p) + I-div(=r) (3.8)

199



4 Energy Equation

There is internal energy, kinetic energy, work done by the viscous forces (equation 3.5),

pressure, and work done by the external body forces. The energy is transferred from one

region of the heated droplet to another by thermal conduction, kinetic energy flux, and

radiation conduction processes, and by the external radiative power source. Using equation

(3.5) we define the viscous dissipation function 4 by the rule,

4D 2 (u)2 +(\,V2+ 09)2+

4dV OtU )2 (w 49 2

ILu + w 21 2 (u av .9w) 2

Y+ + Y- + -'+•

( +z -X 3 +• o Y (4.1) -

In these terms the energy equation is given by (Anderson, Tannehill, and Pletcher [1],

pages 188-189).

-div(pev-' + -. F+

div(TTff -V i; 6 )V

div(Tkgrad(T)) + (ouQt +() 0  (4.2)

We define the enthalpy h as (see Anderson [1], p 188)

h + -(4.3)
p

where
e = the internal energy including quantum states,

p = the pressure, and

p = the density.
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To telescope the terms in the energy equation we make use of the vector identity

grad(A-. B) =- Xx curt (§) + b x curl.(X)+

(B-grad) X+ (A. grad)fB (4.4)

to observe that

pV -grad(!~

pi'. {V" x curl (vC + ,-. grad(v-} (4.5)

Interchanging the dot and cross product in equation (4.5) we see that since for an arbitrary

vector field V'

ti. (6 x curl(ij) - (V' x i. curl(v) = (4.6)

it follows t•Lat

pV . grad (2-) = pV7. {(6. grad) (51} (4.7)

We can then collapse terms in equation (4.2) by observing that the momentum equation

implies that

6, peg. grad) --
ag

+ pf- grad(p). i + div(j. . (4.8)

Thus, using equation (1.1) and equations (4.7) and (4.8) the energy equation (4.2) may be

rewritten in the form,
Dh DpP -5t = -t +

(Ii) Qrn + ,)Q
o + div(K2grad(T)) (4.9)

where (a/at) Qi,, is given by equation (1.6) and 4I is the dissipation function representing

the work done by the viscous forces of the fluid. The term representing the transfer by

radiation from one part of the fluid to another is given by (Siegel and Howell [48], page

689)

(Y Qut- div (6 3ar grad(T)(
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This equation may be interpreted as providing a radiation flux across a surface defined by

k = ,T3  (4.11)
3 aR

where aR is the Rosseland mean absorption coefficient (Siegel [48] , p 504 and Rosseland)

and where o (Siegel [48], page 25) is the hemispherical total emissive power of a black

surface into vacuum having a value of

a = 5.6696 x 10-8 Watts / (meters 2 oK) (4.12)

Using equation (4.10) and equation (4.2) we see that

p..De_ 8()P--T= - , ot
Dt at + t ou

(-pdiv(v-)) + div(-grad(T)) + t (4.13)

where t is the viscous dissipation function given by equation (4.1)

5 EQUATION OF STATE

In the energy equation (4.13) the perfect fluid assumption ([1], p 189) would yield

e = cT, (5.1)

where c, is the specific heat at constant volume, and if we define

Cp (5.2)
C,

where cp is the specific heat at constant pressure, then the pressure p, the internal energy

e and the density p are related by ([1], p 189)

S(-1)pe (5.3)
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6 SUMMARY

Using the definition of velocity (equation 3.1) and the equation of state (5.3) we see

that the number of equations is 5, allowing 3 equations for the three components of the

momentum, and while the intial variables are p, u, v, w, p, e, and T, we see that since the

temperature T is related to e and since pressure is a function of p and C, we see that there

are now exactly 5 unknowns. This means that locally within the droplet we can describe

the future state of the droplet as a semigroup (Temam [51], p 16) acting on the conditions

at time to. If we want to know the value at time t and S is defined so that the solution

at time t is given by S (t - to) acting on the values at t = to of the density p, the velocity

components u, v, and w, and the temperature T. The semigroup relation,

p(t) p(to)

u(t) u (to)

v(t) = S(t - to) v(to) (6.1)

w(t) w(to)

T(t) 2'(t0 )

tells us how to get future values of the density p, the three velocity components, and the

temperature at time t when the values at time to are known.
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ABSTRACT

Experimental results are presented on the time dependent material ejection dynamics associ-
ated with focused excimer laser beams interacting with a small diameter wire. Copper wire 75 sm
in diameter was illuminated with a KrF excimer laser at an irradiance of 80 GW/cm2. Interac-
tion dynamics were recorded using both real time and double strobed ultraviolet laser imaging
techniques. Temporal evolutions of both vaporous and molten material are reported for the laser
beam/wire interactions. Material observed during 2-D shadow imaging on the shadow side of
the wire was shown to originate from the illuminated surface without spallation of material on
the shadow surface. Material emission velocities are reported utilizing two different imaging tech-
niques. A maximum velocity of 1500 m/s was obtained for material ejected in a direction toward
the illuminating laser. The elastically scattered incident radiation (ESIR) for both solid copper
wires and H20 drops show a distinct two-peak structure which is dependent on the incident energy.
Broad band plasma emission for copper starts at 6.5 ± 1.4 ns after the pulse arrival as compared to
11 ± 0.36 ns for water drops. Future work will include the iise of a femtosecond laser to investigate
laser interactions at higher irradiances (200 GW/cm 2) and associated nonlinear behavior.
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I. INTRODUCTION

Excimer laser interaction with metals has been widely investigated utilizing generally flat tar-
gets with beam intensities near the optical breakdown thresholds1- 4 and at intensities above the
breakdown thresholds.'' 6 Limited work appears in the literature on the interaction of a high inten-
sity laser beam with metallic aerosols or small filaments. Armstrong et al.7 performed a theoretical
investigation of the propagation of a high-energy laser beam through metallic aerosols. Po-u.ain
et al." performed experimental work on high intensity KrF excimer laser interaction with solid
aerosols and reported interesting interaction dynamics and material breakdown thresholds for sev-
eral types of solid aerosol particles. In order to overcome some of the experimental difficulties
reported by Poulain et al.8 and to better understand interaction dynamics phenomena associated
with a high-energy laser beam interacting with solid aerosols, the present investigation utilized a
thin metpllic wire instead of solid aerosol particles in the laser beam probe volume. Thus, in this
investigation, interaction dynamics of a high intensity (80 GW/cm2 ) KrF excimer laser beam with
a 75 pm diameter copper wire were studied under atmospheric illumination conditions.

Alexander et al.9 has previously studied the time history of FSIR and broadband emission for
a water droplet illuminated by KrF laser pulse. The present work reports differences in plasma
formation from copper wire targets and water droplets, i.e. time dependent plasma formations
and ESIR. In this paper we present comparative data from the two distinct types of plasmas for
incident laser beam irradiance ranging from 1-100 GW/cm2.

II. EXPERIMENTAL SETUP

A schematic of the experimental setup is shown in Figure 1. A high-energy beam was produced
by a KrF excimer laser (Questek model 2860, A = 248 nin, pulse duration - 17 ns FWIIM) using

unstable optics and was focused by a plano-convex lens (d = 50 mm, f = 250 mm). The cross
-ectional dimensions of the high-energy beam were determined experimentally by translating a
knife-edge through the focused beam. 8 A second method verified the cross sectional dimensions
by measuring the illaminated damage area of a polished nickel plate placed in the focused probe
volume. Dimensions of the focused high-energy beam were approximately 110 x 135 Am for this
investigation. A second excimer laser, identical to the first with the exception of using stable
resonator optics, was used to produce ani imaging beam incident in a direction orthogonal to both
the high-energy pulse and the copper wire. Laser pulses used for imaging were synchronized with
the high-energy pulses illuminating the targets using an analog/digital delay unit, Questek model
9200 Laser Sync Unit (LSU). Sync signals from the camera control unit (Cohu model 8000) were
sent to a pulse generator (HP model 8015A) which subsequently provided the trigger pulse for the

LSU. Pulses from both lasers were simultaneously monitored using a fast photodiode (Hamamatsu
model C1083) and digitizing oscilloscope (Hewlett Packard model 54200A). Analog delay controls
on the LSU were used to calibrate arrival of the imaging pulse to be coincident with the high-energy

pulse (defined as 0 ns image delay in this investigation). Jitter for the system was approximately
:E7 ns. The digital delay on the LSU made it possible to delay the image pulse arrival with respect
to the high-energy pulse from 0-100 is in increments of 10 ns.

Real time images of the laser beam interacting with the wire were obtained with a UV sensitive
vidicon camera. Thus, the image is integrated over the laser pulse duration of 17 ns FWHM.
Images were stored on an optical disk recorder (Panasonic model TQ-2023F) and processed with
a digital image processing system1° for subsequent analysis. The probe volume of the high-energy
illuminating pulse was positioned in the image plane by observing tile plasma formed during air
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breakdown with the vidicon camera. Wire targets were positioned in the same imaging probe vol-

ume and centered by observing the maximum visible emission from the illuminated wire. Location

of the 75 pm diameter copper wire within the same probe volume was maintained by feeding the
wire from a spool through two glass micro-capillaries with an inside diameter of 127 14m. A mass

equal to 17.5 g was connected to the bottom of the wire to keep the wire taut. A stepping motor
was used to rotate the spool to feed new wire into the probe volume for each laser pulse/wire

interaction. The experimental setup used in the current work for interacting H20 droplets with

the excimer laser beam and detecting the plasma emission is described in Reference 9.

III. INTERACTION DYNAMICS

Experimental work to visualize the interaction dynamics was performed using a pulsed real time

video imaging system to record the dynamics associated with the high-energy laser interaction with

a small diameter wire. An ArF excimer laser imaging system was operated at A=193 nm to provide
high resolution images as well as to eliminate scattered 248 nm emission from the high-energy

pulse by using a 193 nm bandpass filter in line with the imaging optics. Dynamic interactions
were observed for a single 80 GW/cm 2 pulse (A = 248 nm, pulse duration = 17 ns) incident on a

75 pm diameter copper wire. For comparative purposes, images of the wire were recorded before

the high-energy pulse interaction and after the high-energy pulse interaction as shown in Figure 2.

The illuminating pulse was incident from right to left in Figure 2 and produced a crater-shaped
region at the illuminated surface as a result of material removal. The term crater in this work refers

to the volumetric region at the illuminated surface of the wire where material has been removed

as a result of the interaction. Images recorded at various time delays during the laser beam/wire

interaction process are shown in Figures 3-5. Delay time given under each photograph is the delay

of the image beam (±7 ns) with respect to the arrival of the high-energy pulse. Dark regions on

the left of the images were characteristic of the imaging system used and were primarily due to the
optical effects associated with the bandpass filter.

The first noticeable evidence of any laser beam/wire interaction dynamics was at 10 ns image

delay as shown in Figure 3. A cloud of material is visible at the illuminated (front) surface of the

wire but not at the shadow (rear) surface. At 40 ns image delay, material emission is evident at the

shadow surface of the wire and a crater like depression is clearly forming at the illuminated surface

of the wire as a result of the material removal at approximately the location of the probe volume.

Scanning electron microscope (SEM) images of the samples showed no physical material removal

from the shadow surface of the wire. Thus, ejected material appearing at the shadow surface of

the wire was removed from the illuminated sujrfa~ce of the wire and propagated around the sides

of the wire. At 60 ns delay, a crater on the illuminated surface of the wire is clearly defined with

an opaque lip forming at the edge of the probe volume region. In addition, no cloud of material is

apparent above and below the probe volume region as shown at 40 ns image delay. Lifetime of the
visible plasma emission from the laser bean/wire interaction was determined to have an average
value of 62 ns (FWHM). The cloud of material appearing at the illuminated surface of the wire

prior to 60 ns image delay is thought to be a dense plasma. At 100 ns delay, a dark region appears

directly in front of the probe volume on the illuminated side. The material is thought to be plasma

or vapor and is evident from 80-120 ns. This material in front of the probe volume was not evident
in the images prior to 80 ns image delay since sufficient quantities do not exist to be detected by

the imaging system. After 120 ns delay, this material moves out of the field of view of the imaging
system.
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Images at longer time delays ranging from 170 ns to 600 ns are shown in Figure 4. From these
images, it is evident that material has traveled from the illuminated front wire surface to form
diffuse fans behind the shadow surface of the wire. These series of photographs show material
moving along the illuminated surface away from the crater region in a lateral direction parallel to
the wire surface. This lateral moving material has moved out of the field of view of the imaging
system after 800 ns delay as shown in Figure 5. Material having individual particle characteristics
is evident behind the shadow surface of the wire for time delays of 800 ns and longer. Particles
could be observed in the photographs for time delays up to 4.5 ps and were shown to be in a molten
state by collecting them onto polished nickel plates.

SEM images are shown in Figure 6 revealing a side view (top) and a shadow surface view (bot-
tom) of copper wire samples after illumination by a KrF laser pulse (A = 248 nm) at 80 GW/cm2 .
The side view clearly shows where material removal occurred and the crater formed. In addition,
molten material flow has occurred as demonstrated by the relatively smooth surface above and
below the crater followed by a rough surface region where solidification of the material occurred.
The top photograph in Figure 6 further shows material flowed in all directions from the crater
region. The bottom photograph in Figure 6 provides evidence that no material was removed from
the shadow surface. Further examination of the photograph shows that a lip has formed on the
side of the wire from molten material exploding away from the illuminated surface as a result of
high pressures.

High magnification SEM images taken of solidified material located in the rough surface region
on the front of the wire are shown in Figure 7. Particles that solidified before "pinching off" a
wave surface can be identified in the top photograph. Solidification waves traveling from the front
surface of the wire to the sides are evident in the bottom photograph of Figure 7. Particles ejected
at the sides of the wire are smaller than particles forming from the surface waves formed near
the front surface of the wire. Surface tension and the height of the surface waves are important
parameters in determining the size of particles formed.

IV. VELOCITY MEASUREMENTS

Velocity measurements of emitted materials from the laser beam/wire interactions were per-
formed using single pulse (A = 193 nm) images similar to those shown in Figures 3-5 and also by
a dual pulse imaging method described in previous work by Schaub et al.11 Dual pulse imaging
is performed by splitting the laser pulse used for imaging into two separate pulses as shown in
Figure 1. One part of the imaging pulse travels directly to the imaging system while the second
part travels over an additional 17.1 m (56 ft) of optical path length. Thus, two 17 ns pulses
(A = 248 nm) optically delayed by 56 ns enter the imaging system providing a double exposure im-
age on the vidicon camera of the emitted material produced from the laser beam/wire interaction.
Velocity of the emitted material was determined by measuring the distance the molten material
moved during the 56 ns time interval. The time interval separating the dual imaging pulses is fixed
by the optical p~ath length, however, the time delay of the first imaging pulse with respect to the
high-energy pulse can be adjusted with the LSU previously described.

Figure 8 is a typical dual pulse image obtained of emitted material with the first image pulse
delayed 500 ns after the arrival of the high-energy pulse (80 GW/cm2 ) which was incident from
right to left. Samples were positioned to appear beyoaid the right edge of the monitor screen to
eliminate scattered 248 nm emission from the laser beam/wire interaction which saturates the
vidicon camera. Average velocities of materials emitted in a direction away from the illuminating
laser were 570 m/s at 300 ns image delay and 460 m/s at 500 ns delay. Dual pulse images were
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not obtained for image delays shorter than 300 ns since the material was not dense enough to be
picked up by the imaging system and for image delays longer than 500 ns as a result of material
expanding in diffuse fans covering the complete field of view. Figure 9 is a typical dual pulse image
obtained at image delays of 1500 ns and longer of individual particles traveling in a direction away
from the illuminating laser (right to left). Particles are approximately 10 pm in diameter and move
less than 5 pm in 56 ns time delay which corresponds to a velocity less than 90 m/:.

The velocity of emitted material was also determined by utilizing a single imaging pulse and
measuring the material movement for a known time delay relative to the arrival of the ablation
pulse. A similar technique was used by Alexander et al.12 to determine interrcion velocities when
an excimer laser beam interacted with a water droplet. For the current work, it is assumed that
ejected material originates from the front of the crater region and -:mission starts at 0 ns image delay.
Velocity calculations for ejected materials from the d1 and single imaging pulse techniques are
presented in Figure 10. Data plotted in the graphs differ only by the scale of the time (horizontal)
axis. The top graph has been expanded to emphasize the acceleration and deceleration during the
laser pulse. Each data point on the graphs represents the average of approximately five velocity
calculations for each time frame. An estimated error associated with the material emission velocity
calculations is ±20% and is primarily due to the uncertainties in properly identifying the exact
starting and ending of material boundaries.

Material emission velocities in a direction towards the illuminating laser were calculated by
measuring the material movement on the illuminated (front) surface of the wire and in a direction
perpendicular to the wire. The starting position of the front wire surface was located by comparing
wire images before the high- energy pulse illumination with the delayed images during illumination
of the samples. Measurements of emitted material movement toward the illuminating laser could

generally be made for time delays longer than 30 ns since material boundaries could not be
clearly identified. However, the emission velocity was calculated for material shown in front of
the probe volume at 100 ns delay in Figure 3. The average velocity of spatially emitted material
toward the laser is shown to increase from 1300 m/s at 10 ns time delay to 1500 m/s at 20 ns. The
corresponding acceleration is from the 17 ns (FWHM) high-energy pulse still depositing energy
into the interaction region. A subsequent deceleration of material occurs after the end of high-
energy laser pulse. Material emission velocities in a direction away from the illuminating laser were
calculated by the same procedure used to measure material movement on the illuminated surface
of the wire. In order to obtain velocity calculations in a direction away from the illuminating
laser, single pulse imaging was used up to 70 ns, i.e., until material boundaries were no longer
distinguishable and dual pulse imaging was used from 300-500 ns.

Lateral material emission is defined in this work as emitted material at the illuminated surface
of the wire moving out of the crater region in a direction parallel to the wire. Lateral emission
velocities were obtained only up to 800 ns image delay since material moves out of the field of
view of the imaging system as shown in Figure 4 and 5. As shown in Figure 10, lateral emission
velocities remain constant at approximately 800 m/s until 130 ns image delay when deceleration
to 270 m/s occurs at 300 ns delay. Deceleration occurs after the emitted material crosses the
smooth interaction surface region located above and below the crater and enters the rough surface
region shown in Figure 6. Molten material is cooling and solidifying in the rough surface region on
the illuminated wire surface causing deceleration. The velocity of the lateral material emission at
300 ns image delay is comparable to the speed of sound at atmospheric conditions.

As shown in Figure 5, emitted particles appear behind the shadow surface of the wire at a time
delay of 4.5 ls. An explanation for particles emitted microseconds after a 17 ns pulse interaction is
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provided by examining the thermal diffusion time and the material emission velocities. For metals
interacting with an excimer laser pulse, Jervis et al.13 report that the thermal diffusion length (6)
is given by

S= 2Vf (1)

where X is the thermal diffusivity and r is the beam pulse width. For copper and a 17 ns pulse
width (FWHM), b = 2.2 yrm. Penetration depth (d) of the incident beam (A = 248 nm) into
copper is calculated to be 11 nm. Since 6 > d, depth of energy distribution over the 17 ns pulse
width is determined by thermal diffusion as opposed to the laser penetration depth. Therefore,
thermal diffusion cannot be neglected for this investigation. Particles emitted during long time
delays originated from rough surface regions of the wire shown in Figure 7. SEM analysis of cross
sections of interacted specimens revealed that the molten material in the rough surface regions can
exceed 8 ym in thickness. By rearranging Eq. (1), a convenient ordrr-of-magnitude estimation for
the thermal diffusion time (t) through a metal surface is given by Ready 14 as

D(2t = D 2 (2)
4X

where D is the desired penetration thickness. For D = 8jim, thermal diffusion time (t) would be
200 ns. Single pulse imaging revealed molten material moving over the rough surface region of the
wire at approximately 1 ps image delay. Emitted particles from this zone were previously reported
to have velocities less than 90 m/s. Since these particles originate from the front wire surface and
are imaged behind the shadow surface, total distance traveled is over 75 Am (wire diametr) and
the corresponding travel time would be over 1.0 tis for a velocity under 90 m/s. Therefore, thermal
diffusion time and material velocities across the wire surface account for microsecond delays of
particle emission from the laser beam/wire interaction.

V. COPPER AND H 20 DROPLET PLASMA EMISSION

For our experiments at A = 248 nm, one photon is needed to ionize copper while three are
required for water and air. As showr, in Figure 11 the onset of ionization and plasma formation
for copper starts approximately 4 ns earlier than plasma formation in a water droplet. Several
mechanisms contribute to the observed differences. Before ionization occurs in water, the molecules
of H20 will breakup into H2 and 0 which initially delays the plasma. The ionization potential
for H2 and 0 is three times greater than the ionization potential for copper. After initial electron
formation by multiphoton ionization (MPI), cascade breakdown occurs. For cascade ionization to
occur, electrons are needed with an energy greater than the material ionization potential. During
the cascade ionization (CAI) process, energy losses such as electron diffusion, attachment to oxygen,
and excitation all alter the plasma formation processes. In Figure 11, the plasma emission times
for both copper and water plasma are shown. The delay in the start of the copper plasma can be
explained by the 4s'-3dl° transition.

The time history of ESIR behavior for copper is similar to the water case as shown in Figure 12.
Figure 12 is a plot of the arbitrary intensity of the incident pulse and ESIR as a function of time
for 75 pin diameter copper wire illuminated by a KrF laser pulse at 1-100 GW/cm 2 . The arrival
of the incident pulse is defined as the time when the intensity reaches 1/e2 of its maximum value
and is used to reference all other delay times. The delay times Pt, and Pt 2 are taken from the
incident pulse arrival to the first and second peak of ESIR, respectively. Vt is the delay time from
the incident pulse arrival to the first minimum of the ESIR. As expected, the first ESIR starts as
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the incident pulse arrives. In Figure 12(a), one observes that the first ESIR is rapidly increasing
within 6 ns after the incident laser pulse reaches the surface of the copper wire. ESIR peaks and
then decreases as a result of the plasma formation on the surface of the material which absorbs
the incident pulse energy. As the time is increased, the density of the resulting electrons and ions
increase such that a dense plasma reflects the incident pulse until its reaches the peak, Pt2 . At
the irradiance of 100 GW/cm2 , the intensity of the second ESIR peak is higher than PtI. This
indicates that the higher input energy results in a higher frequency plasma as well as a more dense
plasma. At the input energy of 50 GW/cm2 , the first ESIR appears to be dominant. At lower
input energies, there is no distinct second ESIR peak which implies only a low density plasma on
the surface of the copper wire. Examination of the wire surface using a stereo microscope revealed
oxidation and no material removal for the lower input energies.

The delay times, Pit, Pt2 and Vt for the copper and water can be compared and are shown in
Figure 13. In Figure 13, subscripts c and w refer to the copper and the water, respectively. As
shown in Figure 13, there is a general trend for the delay times of the copper to be higher than for
water. Hlowever, the standard deviation for the copper wire results is much higher than P12 and Vj
due to the plasma instability in time, even though the Pit is quite stable. As the input irradiance
is increased, the delay time for plasma formation for both materials remains essentially constant.
The spectral distribution of the ESIR and plasma emission in the spuctral range of 440-520 nm is
shown in Figure 14. The second harmonic of the ESIR is approximately 496 nm and serves as a
reference wavelength. At 26 ns after the incident pulse arrival, the ESIR is less than the continuum
radiation. The copper line (510.5 nm) and nitrogen (510 nm) line are both very evident in the
plasma emission spectrum.

VI. SUMMARY

High intensity ultraviolet laser interaction with a metallic filament and with H20 droplets has
been investigated. A 2-1) shadow imaging system showed both vaporous and molten material
emitted front the laser beam/wire interaction. Material was shown to be einitted in every direction
from the probe volume as a resuit of a high pressure region at the surface of the wire. Emitted
material imaged at the shadow surface of the wire originated from the illuminated surface and
propagated around the sides of the wire. A maximum material velocity of approximately 1500 m/s
was calculated for ablated material in a direction back toward the illuminating laser. Emitted
particles were evident 4.5 pis after arrival of the high-energy pulse. It was concluded that this
delay was the resultant combination of the thermal diffusion time and material emission velocities.
Particles ejected at. these later times were shown to have a velocity of tinder 90 m/s.

The ESIR of copper wire plasmna also has a two distinct peak structure i;hich is dependent on
the input energy and, except for differences in initiation times, is similar to plasma formation in
1120 droplets. l'lasnia formation of the copper wire started 4 ns earlier as a result of the dissociation
times of 1120. In a(ldition, the ionization potential of copper is around three times smaller than
I12 an(l 0. However, the rise time in the copper plasina was not as fast as that observed in plasma
eritted from water (droplets as a result of interband transition.
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Figure 1. Schematic of the experimental setup.

220



-- ' --

• II

Figure 2. Images of 75 pm diameter copper wire before high-energy illumination (top) and

after illumination (bottom). Irradiation• was 80 GW/cm 2 using a KrF pulse (A = 248 urm). Beam

propagatiou was from right to left.
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Figure 3. Interaction of KrF laser (A 248 nm) with a 75 pm diameter copper wire at
80 GWN/cm 2 Time given under each photograph is the delay of the image beam with respect to
the arrival of the high-energy laser pulse. Beam propagation is from right to left.
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Figure 4. Interaction of KrF laser (A - 248 nm) with a 75 4m diameter copper wire at
80 GW/cm 2. Time given under each photograph is the delay of the image beam with respect to
the arrival of the high-energy laser pulse. Beam propagation is from right to left.
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Figure 5. Interactio, of KrF laser (A = 248 nm) with a 75 yrm diameter copper wire at
80 GW/cm 2. Time given unjer each photograph is the delay of the image beam with respect to
the arrival of the high-energy laser pulse. Beam propagation is from right to left.
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Figure 6. Photomicrographs of side view (top) and shadow surface (bottom) of an illuminated
75 pm diameter copper wire. Irradiation was 80 GW/cm2 by a KrF pulse (A = 248 nm).
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Figure 7. Photomicrographs of typical waves and particle formations on the front surface of an
illuminated 75 pm diameter copper wire. Irradiation was 80 GW/cm2 by a KrF pulse (\ = 248 nm).
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Figure 8. Typical dual pulse images of emitted material traveling from right to left away
from the ablation area. Time delay between each imaging pulse is 56 ns providing a double
exposure image. First image pulse delayed 500 ns after arrival of high-energy pulse. Irradiation
was 80 GWN/cm 2 by a KrF pulse (A =248 nm). Image dimensions are 280 pm. square.
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Figure 9. Typical dual pulse images of erraitted copper particles traveling from right to left

away from the ablation area. Time delay between each imaging pulse is 56 ns providing a. double

exposure image. First image pulse delayed 1500 ns after arrival of high-energy pulse. Irradiation

was 80 GW/cm2 by a KrF pulse (A =248 nm). Image dimensions are 165 X 230 pm.
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Figure 10. Average velocities of emitted materials from interactions of KrF laser radiation
at 80 GW/cri 2 with 75 /um diameter copper wire as a function of the image time delay. Top
graph has been expanded to emphasize the acceleration during the laser pulse and the subsequent
deceleration.
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Figure 11. intensities as a function of time for the incident pulse, the broadband ermissions of
copper wire (75 pm dia.) and water droplet (75 pm dia.) Mluminated by a 100 G W/cm2 KrF laser
pulse.
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Figure 12. Intensities of the incident pulse (solid curves) and the ESIR (dashed curves) as a

function of time for 75 pm diameter copper wire illuminated by a KrF laser pulse of 1-100 GW/cm2 .

The vertical scale is in arbitrary intensity units.
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ABSTRACT
A computer model is used to study laser-induced plasma formation and explosion of single

droplets. The model accounts for the evolutions of the plasma and the resulting fluid flow. The
model shows all the qualitative features of experiments, including laser-supported detonation
waves.. In addition quantitative agreement with measured wave velocities is obtained to within
better than 50%. Results are presented here for wave velocities as a function of average laser
intensity.

INTRODUCTION
The problem of laser-induced breakdown (LIB) of small droplets has been the subject of

many recent studiese.g. 1-10. Chang and coworkers have developed experimental techniques e.g.1-6
permitting detailed study of laser-induced breakdown (LIB) of small droplets. Most recently, they
have reported a new diagnostic technique 6 which gives both temporal and spatial information on
LIB-generated plasma at two selectable wavelengths. In this Journal, they have reported new
results8 using this technique for LIB of a single water droplet containing Na salts exposed to single
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and multiple laser pulses. In this manner, they have been able to compare propagation speeds of H
and Na in the exploding droplet and to obtain information on cooling rates of the plasma at various
positions. Such information is essential in formulating models for the LIB processes in particles.

THE MODEL
We have previously described7 theoretical results from a one dimensional model that

describes the evolution of the LIB plasma and the resulting fluid flow. The model agreed well with
the experimental results, giving all the qualitative features of an experiment of Hsieh et a15 ,
including laser-supported detonation waves. In addition, the model gave quantitative agreement
with measured fluid velocities5 to within around 50%.

We have used the model to examine the most recent experiments of Zheng et al 8 on LIB of
small droplets. Here we give the wave velocities as a function of average laser intensity and
compared with some of the available experimental data8. We begin by briefly describing the model,
the equation of state data base, and the calculation procedures employed for the plasma properties;
a more extensive discussion of the model may be found in Carls and Brock 9;; a detailed discussion
of the model is contained in the dissertation of Carls11.

All experiments on LIB of small droplets by visible lasers have been carried out in the
geometrical optics regime. Thus, due to focussing by the droplet, any heating is non-uniform and
so the resulting fluid flow is two dimensional. Nonetheless, we have shown previously that a one
dimensional model of the flow illustrates many of the features of the flow that are observed during
LIB7 . The reason for the success of the 1-d model is that, at very high irradiance, the laser forces a
very directional (planar) response of the fluid. Also, because the shock waves are strong, they are
very narrow and minimize distortions of the planar shocks by the droplet geometry. Thus, during
the laser pulse the most important hydrodynamic flows occur down the laser axis. Two
dimensional effects come to dominate the flow at later times or after the laser pulse ends.

The system we simulate8 consists of a water droplet, surrounded by air and irradiated by a
laser at 532 nm. The one dimensional Cartesian model represents the droplet as a region of high
density (the liquid water) surrounded on either side by regions of low density (air). The model
does not include prediction of the initiation of breakdown. Instead, a small region of plasma is
initially assumed to have formed. In the model, this region is represented as a thin slab located
close to the shadowed side of the "droplet," as observed in the experiments8 . The model predicts
the subsequent growth and evolution of the plasma during the laser pulse as well as the evolution of
nonionized regions, including the breakdown of initially nonionized material. Coupling of the
plasma to the laser radiation is included explicitly.

The plasma is assumed to be at local thermodynamic equilibrium (LTE) and thus, as the
plasma heats or cools, its properties change according to its equation of state. The model does not
include an explicit breakdown mechanism but allows formation and recombination of plasma as the
local equilibrium result of compressional or radiative heating or cooling due to expansion. LTE is a
reasonable assumption in this case because the high fluid densities (0.1 - I g/cm 3 ) yield very high
collision rates and short relaxation times. The pressures are sufficiently high that ionization can
occur by the pressure mechanism.

The laser beam is assumed to propagate (larlely unattenuated) into the droplet until reaching
the plasma. There, part reflects from the plasma/liquid interface and the rest is transmitted or
absorbed. (The assumption that there is a distinct interface is justified later in the paper.) Because
of the high temperature of the initial plasma region (30000 K), its pressure is very high (-500000
atm). Thus at t > 0 this region literally explodes ito the surrounding regions. The resulting fluid
flow changes the plasma optical properties. In addition, as the plasma heats, it drives the fluid
flow. Thus, absorption varies with time and position. This nonlinear coupling between the droplet
ond the laser beam is an essential feature of the LIB process after plasma initiation.

The fluid flow of both the nonionized and the plasma regions is described by the Euler
equations:

ep/lt + 0ofpv)/& = 0 (1)
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o4pv)dr + OYpvv)/dz = -9Pld (2)
4pE)!ct + &pv(E + P))/& = Srad(Z) (3)

Here, for the one dimensional model, t is time and z is the direction defined by the laser
beam. p is the mass density, v the z component of the fluid velocity, p the fluid pressure, E is the
combined specific kinetic and internal energy, and Srad(Z) is the energy absorption rate from the
laser per unit volume.

Equations (1), (2), and (3) were solved using the Flux Corrected Transport (FCT) method
pioneered by Boris and Book12. This technique is a stable, conservative method for solving
hyperbolic partial differential equations, and is especially effective in the calculation of flows
containing shock waves. We used an FCT algorithm having higher order phase accuracy that
computes blast waves more effectively than the original version 13. The calculation was explicit in
time.

The gradient of the pressure, diP/i, drives fluid motion through the momentum equation (2).
The extent to which the pressure is reliably predicted for a substance determines, in part, how well
the hydrodynamic simulation corresponds to observed behavior. For LIB, the fluid states must
include plasma states. By assuming local thermodynamic equilibrium for the plasma and the other
fluid states, the pressum. can be obtained through an equation of state (EOS) solely as a function of
the mass density and internal energy of the fluid. Thus, an EOS that reliably predicts the
equilibrium properties of the liquid, vapor, supercritical and plasma states of water over a very wide
range of temperatures and densities is necessary.

For the liquid, vapor and supercritical states of water, the EOS of Kestin et a114 and Haar et
all 5 have been used. These authors give Helmholtz free energy as a function of density and
temperature [ A= A(pT) ]. For the plasma state, the EOS compiled by Ree 16 was used. This
plasma EOS is a combination of experimental data where available, and theoretical predictions
where necessary. Ree's EOS was used in the range of densities between 1 - 4 g/cm 3, and
temperatures between 3000 - 120000 K. The most extreme conditions encountered in the
simulations were densities somewhat more than twice the normn'l liquid density (2.2 g/cm 3), and
temperatures around 50000 K. The various EOS had to be lapped together consistently at their
boundaries to provide a smooth transition from one EOS to the next.

The next step in modelling the LIB system is to specify the source term, Srad(Z) This term
accounts for heating of the fluid by absorption of laser radiation, and requires knowledge of the
interaction of the fluid with the laser radiation. The most important of these is the plasma's
interaction with the light since nonionized regions are essentially transparent. The model presented
for this interaction is simple yet still represents the essential features of the plasma.To model the
plasma/laser interactions one must describe the optical properties of the plasma. Of course, these
properties vary as a function of position and time because of fluid flow and nonuniform heating.
The model accounts for spatial variations of the plasma propertied. The complete optical properties
of a material are described by its dielectric function, e = e' + ie" , composed of its real and
imaginary parts. The Drude model17 was used to determine the dielectric function of the plasma in
this calculation.

PLASMA WAVE VELOCITIES
An experimental observable in many investigations is the wave velocity. We report here

average wave velocities as a function of average laser intensity (for a 50 nsec pulse). Fig. i shows
the three waves studied--namely, the shadow side blast wave, the illuminated side liquid shock and
the illuminated side blast wave. The calculation in our model begins with a plasma layer imbedded
in the droplet, close to the shadow side of the droplet, as indicated in Fig. 1. Immediately, two
identical compression waves erupt from the plasma region. The two waves form when the high
pressure initial plasma region explodes in both directions, compressing and ionizing the adjacent
liquid. At early times these two waves are nearly identical, but the wave nearest the shadow face
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quickly leaves the droplet, causing rapid decompression and heating the surrounding gas. The
shock accelerates into a blast wave as it enters the gas phase, forming the shadow side blast wave.

The second shock, moving through the droplet and toward the laser, also compresses,
heats, and ionizes the liquid that it traverses. The shock strength determines the initial degree of
ionization. As the liquid ionizes, it absorbs radiation, leadingto further ionization. With sufficient
ionization, the liquid becomes a plasma and absorbs strongly. Thus two ionization mechanisms are
in operation-- so-called pressure ionization and laser heating. Strong laser heating can only occur
after pressure ionization has ionized the liquid sufficiently. At very high laser intensities, the high
intensity causes the shocked ionized liquid to absorb more energy than it uses compressing. The
resultant higher ionization leads to higher absorption; the flow becomes self-accelerating. The
shock grows strong enough to ionize the liquid completely. , and so the liquid absorbs strongly,
immediately after the shock passes, without any laser-assisted ionization. This is an optical
detonation wave (ODW).

As the illuminated side liquid shock reaches the gas-liquid interface, it breaks out of the
droplet, accelerates to high velocities, and strongly compresses the surrounding gas, forming the
illuminated side blast wave. At sufficiently high laser intensities this illuminated side blast wave
may become an ODW.

Fig. 2 shows a plot of illuminated side average blast wave speed as a function of average
laser intensity. The 50 nsec pulse actually is modulated6; this modulation is simulated in our
calculations. The modulation results in a decreasing slope of the wave speed vs intensity curve.
The modulation also tends to inhibit development of a strong ODW. Fig. 3 shows the illuminated
side liquid shock speed as a function of average laser intensity. The two experimental points are
from the study of Chang et al.6 and represent the difference between the experimental speeds
derived from following the Na emissions and the Hax emissions. The movement of the maximum
in these emissions is identified with the actual wave movement, although the relation of the peaks in
the emissions to any of the fluid waves discussed here has not yet been established. Fig. 4 shows
the shadow side blast wave speed as a function of the average laser intensity. This curve shows
some interesting detail. At low intensities, the intensity is too low to produce much ionization of
the illuminated side liquid shock. Even though the illuminated side waves do not absorb strongly,
the radiation is too weak and the degree of ionization of the shadow side blast wave too low to
increase the shadow side blast wave speed. Somewhere in the vicinity of 2 GW/cm2 this all
changes. The laser intensity becomes high enough to increase the shadow side blast wave speed,
more than compensating for the energy this wave uses in compressing. Finally, at intensities
higher than around 10 GW/cm2, the illuminated side liquid shock and blast waves are highly
ionized and absorb a large fraction of the laser radiation. This causes the shadow side blast wave
speed to level off. Additional increases in laser intensity merely ionize more strongly the
illuminated side waves, allowing only a decreasing fraction of the increasing total energy to reach
the shadow side blast wave to compensate for energy used in compressing. The apparent
agreement between experiment 6 and our model results may be regarded as fortuitous for reasons
discussed above. Additional experimental measurements would be desirable to explore the
interesting behavior indicated in Fig. 4.

As we develop our code for solution of the nonlinear Maxwell's equation for scattering and
absorption of laser radiation by particles of arbitrary shape, it would at that time be desirable to
extend our code to axisymmetric flows to explore the fascinating new field known as
electrohydrodynamics where there is close, nonlinear coupling of Maxwell's equations to
hydrodynamics. This is a subject that has hardly been explored as yet either experimentally or
theoretically.
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ABSTRACT
The problem of scattering and absorption of electromagnetic radiation by particles

can be solved analytically for only the simplest cases, but numerical methods allow a
straightforward extension to particles with arbitrary inhomogeneities and arbitrary shapes.
In this paper a recently developed frequency domain method involving CFD techniques is
reviewed and applied to the problem of a dielectric sphere. Numerical results indicating the
promise of finite element methods are given and recommendations for further investigations
are presented.

iNTRODUCTION

Mie theory exactly describes the absorption and scattering of a plane electromag-
netic wave by a dielectric sphere of arbitrary size and refractive index (van de Hulst, 1957;
Kerker, 1969). This conceptually simple analytical solution is well known, but it involves
cumbersome computations. Since the advent of high-speed computers, which utilize paral-
lel and vector processing, much effort has been made to improve the analytical scattering
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Previously a finite difference method was applied to the problem of a linearly polar-
ized plane electromagnetic wave scattered by a perfectly conducting sphere (Ling, 1988).
The results demonstrated the applicability of computational fluid dynamics (CFD) methods
to the basic scattering problem. CFD methods offer geometrical flexibility, allowing gen-
eralization to more complex shapes and inhomogeneous particles. In this presentation, the
investigation is broadened by using a finite element method to model scattering by a dielec-
tric sphere; preliminary results confirm that CFD methods are a promising technique. The
objectives of further studies are discussed in the final section.

THEORY

The problem to be solved consists of a plane polarized wave incident on a dielectric
particle; only linear scattering is considered. Assuming exp(i(ot) dependence for all fields,
the electric and magnetic fields must satisfy the vector wave equation both inside and out-
side the particle:

V 2 E+k 2 E=O V2 H +k 2 H =0 (i,2)

where k2 = co2et. Additionally, the boundary conditions:

A
(Eout - Ei) xn=0 (H out - Hin X n = 0 (3,4)

require that the tangential components of E and H must be continuous across the surface of
the particle (Bohren and Huffman, 1983) and the Sommerfeld radiation condition (Stratton,
1941) requires that the scattered fields represent divergent traveling waves as r -+ a*.

By introducing two auxiliary scalar functions, the electric and magnetic Debye po-
tentials, fll and mIl (Kerker, 1969; Born and Wolf, 1959), it is possible to reduce the
vector equations (1) and (2) to a set of uncoupled scalar wave equations:

V2 el + k2 e-1' = 0 V2 mrn + k2 mH = 0. (5,6)

The field quantities then can be deduced from the potentials as follows:

E = V x [ V(relI)x A] + ico(*Vx(r m fl) (7)

H=Vx[V(rmH)x 9 ] + i VVx(rel). (8)

Since the field variables are oscillatory in nature over the infinite domain it is advan-
tageous to reformulate the problem once again, this time in terms of a generalized amplitude
function which eliminates the oscillations due to the incident field (Ling, 1987). By mak-
ing use of the superposition property of the fields, the Debye potentials outside the particle
can be decomposed into incident and scattered components. The scattered components then
are written as:

= cos 0 sin 0 eikr (9)
el __s_=_k _ fk(r2B) r
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e eikr
in s f2 (r,O) r (10)

where f(r,0) is a Debye amplitude function. Similar expressions can be written for the po-
tentials inside the particle. It should be noted that the formulation of equations (9) and (10)
inherently restrict one to the consideration of only axisymnetric problems. For asymmetric
cases the 0 dependence of the Debye potentials can not be factored out explicitly and one
must solve for f(r,0,0).

By substituting equation (9) into (5) and equation (10) into (6) it can be shown that
the problem to be solved becomes:

eiv [f lfc 3 2 f1  2f2ik +3 r ] = 0 (11)•r2 ~ ~ r co r 0 r22-,.1

slekr [ 2f2 af2  32 ý2 f2  1

+ 2ik -$ + 1 cot°00 + f2 -' 2  f2 ] - 0 (12)

The boundary conditions (3) and (4) are, in terms of f1 and f2,

(.Oil ell eikIla (0I EI eikla COI ell

-O.'(a,-) - (aO) W(a,O) (13)(0il) 2 41(a (kI)2 f (a,1 (kl)2 sin 0'

ik1 a ,) ika fi(aG) - 1 W(a,O) (14)
k1 2 ' k sin 0

eik a [llu fF +iklIa I 1
i 2 iklI fI!a ]rf 1i + r-a 2- (I r-a (15)

SI (kXI)2 fr +- -a 7 2 ikf +k: . .(((k sin 0 -sin

fli1 a re feiik ar 1 fFe" e11 H 2. + Akf + e (16)Nl~1) I ik f arra&~1k 2+ I Jr---a Y 'i 1)2 miO ra

where:

eikr cos0 eikr teikrW(r,O) = -cot (O)-- ta 1( ) -']•- (17)

sin 0

and the radiation condition can be expressed as:

lrn af 0Urn a
lra- r-4 ira ý = 0. (18)

Equations (13) through (16) are formulated for a spherical particle, where "a" is the radius
of the sphere, "I" denotes quantities outside the sphere, and "II" denotes quantities inside
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the sphere. For the general asymmetric problem, equations (13) through (16) must be sat-
isfied at all (x,y) on the particle surface and the partial derivatives are given by V f * n.

FINITE ELEMENT METHOD AND CURRENT RESULTS

The system of equations is solved numerically on a Cray X-MP by a finite element
method with 9-node Lagrange quadrilaterals (Becker, et al., 1981) that utilizes a frontal
solver to invert the matrix (Irons and Ahmad, 1980). A multiplier method (Carey and
Oden, 1984) is used to enforce the jump in solution across the particle boundary, which
must coincide with element boundaries. The radiation boundary condition is imposed at a
finite artificial surface, r < co, using an operator to annihilate the first two terms of the ana-
lytical solution (Bayliss, et al., 1982). Both the radiation boundary condition and the jump
in flux condition are incorporated into the weak formulation of the differential equation.

1.0'

Initial
investigations
have been
performed for a Pi Nwical RoIP)

spherical water 0.0 NW kms.G')

droplet with a 2 .y .= -- A&I) RaF)
gim radius -

irradiated by a -0.5
plane wave
having X =
10.591 gim. 0 o
The refractive Radial Diomane, pm

index of the Plgue 1. Debye amplitude function Fl along centaltne of particle at thetam= (forward scattering).
particle was particle radius - 2 gm, wavelength - 10.591 gm, mad refractive index - 1.179 + 0,0711.
1.179 + 0.071i
and the size
parameter was 1.19. To test the validity of the numerical code, the Debye amplitude
functions were calculated for the external region alone so that the difficulties encountered in
handling the jump conditions could be avoided. Results for this study were compared to
the analytical solution and are shown in Fig. 1. As can be seen, excellent agreement wAs
obtained using a 4 x 8 grid and 0.33 sec. of CPU time.

Current studies are focusing on solving the complete problem over the internal and
external regions. At this time the jump conditions are being modelled successfully but a
numerical problem as r -+ 0 must be resolved. However, results indicate that once this is
done the complete problem for this spherical droplet can be obtained accurately with an 8 x
8 grid and approximately 2 sec. of CPU time.
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60
Another

point worth 4o-
noting concerns F1 I u• I Nual Rui)

solutions, which Ao - - RAs.IM()

are often the A1Wb,,=y WW. q)
desired result of 0"
the calculations.
The complete 20
problem (internal
and external -401
regions) was 0 100 200 300 400 S0o
studied for a PilDinanceMm
larger, spherical lgwte 2. Deye brnplitude functin Fl along centerine of pa•cle a• thea=0 (forward scantring).
water droplet Particleradius =20 pn, wavelength= 10.591 pm, and refractiveindex= 1.179+0.0711L
(radius of 20
gim) having a
size parameter of 11.8. For this particle forward scattering was much stronger than
backward scattering and field oscillations were present inside the particle. Fig. 2 compares
the numerical results for the external region (forward direction) to the analytical ones. Even
though inadequate intemodal distances in the internal region caused oscillations in the near-
external region, the far-field numerical solution was in excellent agreement with the
analytical one. Hence it was not necessary to use mesh refinement and completely capture
the internal characteristics to obtain accurate far-field solutions. The results in Fig. 2 were
obtained in 33.6 CPU sec. using a uniform 64 x 16 mesh.

Summarizing, current results imply that the above finite element, frequency domain
(FE-FD) method is a promising technique. Thus far computation times have been low;
therefore larger, more arbitrarily shaped particles van be handled with the FE-FD method.

RECOMMENDATIONS FOR CONTNUED INVESTIGATIONS

Following is a list of recommendations for further investigations; a short descrip-
tion of necessary requirements accompanies each suggestion.

(1) Consider multilayer spheres
This is a minor modification which involves adding a second set of jump
conditions at the material interface within the spherical particle.

(2) Consider arbitrarily-shaped axisymmetric particles
A grid generation routine that allows the user to define an arbitrary surface
of revolution must be added.

(3) Add postprocessor
For practical applications the results may be needed in terms of the Mueller
scattering matrix, normalized source unction, or efficiency factors. A
postprocessor would calculate the desired quantities from the Debye ampli-
tude functions.

(4) Improve current algorithm
To date no time has been spent on code vectorization, implementing a more
efficient solver, or utilizing localized grid refinement or adaptive grid tech-
niques. These modifications can reduce CPU time significantly, and may
be necessary to obtain accurate results in 3-dimensions.

(5) Extend the calculations to asymmetric cases
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The Debye amplitude functions must be determined as functions of r, 0, and
*. This involves a straightforward but nontrivial extension to three-dimen-
sional finite elements.

(6) Consider nonlinearities
Considering nonlinear materials where the polarization is a nonlinear func-
tion of the electric fields will result in a different, nonlinear differential
equation for the Debye amplitude functions. The finite element code must
be modified to handle nonlinear equations.
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ABSTRACT

A semi-empirical approximation to the extinction efficiency, Q.,t, for randomly oriented spheroids,
based on an extension of the anomalous diffraction formula, is given. Using this formula, Qt can be
evaluated over 104 times faster than by previous methods. This approximation has been verified for
complex refractive indices m = n - ik, where 1.01 < n _S 2.00 and 0 :. k _5 1 and aspect ratios from
.5 - 4. The approximation is uniformly valid over all size parameters and aspect ratios.

1. INTRODUCTION

The calculation of the extinction efficiency for randomly oriented spheroids by either spheroidal
functions 1, the T-matrix method 2 or other more general techniques is computationally expensive.
Furthermore, all these techniques are limited in both aspect ratio and size. The approximation presented
here is over 104 times faster and has no limitations in aspect ratio or size.

We know of only two approximations to the extinction efficiency for randomly oriented spheroids
Q,m,, the Rayleigh for small particles and the anomalous diffraction (or Eikonal) theory' for all sizes.
The former gives excellent results for minor axis size parameters typically less than 0.5 whereas the
latter always underestimates Q.., outside the Rayleigh region.

We have previously used 4 the Eikonal approximation in conjunction with edge effect terms (or
Fock theory) to develop a simple approximation to Q,,l for spheres for medium to large size parameters
(Eikonal-Fock region). Small sizes were handled by the Rayleigh theory. A 'bridging' function was used
to smoothly transfer from the Rayleigh region to the Eikonal-Fock region. The same general approach
will be used in this report. We found it necessary to modify the Eikonal approximation for spheroids
with large aspect ratios (> 4) a-d in addition appropriate expressions for the Pock terms for oblique
incidence had to be derived.

2. DEVELOPMENT OF THE EXTINCTION FORMULA

2.1 Extended Eikonal Approximation

The Eikonal formula is derived by twosuming that the incident plane wave is not significantly skewed

in passing through the scattering object and that, to first order, the effect of the scatterer is to locally

249



retard the phase of the wave and attenuate its amplitude5. The stri ,,,- f validity of the formula istherefore the region where (n - 1) << 1. The scattering object is in . treated as an irregular disc
normal to the incident wave and possessing a spatially dependent pha d amplitude. The Fraunhofer
pattern at infinity is then derived and Q.,* evaluated from the stanr - d relations. For a spheroidal
scatterer, this procedure leads immediately to the following formulas:

Qv = Re{2+ 41..! 4(e- - 1)} [1]

where w is given by

P
and

p = Vos2 0 + r2 sin2 0, a = 2ra/A, b = 2•r/A, m = n - ik. [3]
Where r = a/b is the aspect ratio (for prolates r > 1 and for oblates r < 1), a is the length of the semi-
axis of rotation, / is the other axis of the spheroid, 0 is the angle between the incident radiation and
the a or a axis, A is the wavelength of the scattered radiation and m is the complex index of refraction.
Hence a and b are the two size parameters associated with the spheroid and p can be considered a
projection operator of the penumbral ellipse (the ellipse defined by the shadow line on the surface of
the spheroid) onto the plane perpendicular to the direction of the incoming radiation.

Equation 1 has the same form as that for the sphere but with a variable change. The radius of thesphere has been replaced by half the distance covered by the ray that traverses the spheroid through
its centre. This similarity in form is due to the fact that the spheroid is an afflne transformation of the
sphere. However AO, the phase difference through the particle is not correct. For large aspect ratios
and indices much different from one the phase of the diffraction peaks for randomly oriented spheroids
becomes incorrect when compared with exact results. A similar effect was noticed by Stephens' for
infinite cylinders.

As a result of the above discussion we have slightly modified the Eikonal approximation. Now the
deviation of the central ray is taken into account when computing its phase difference. This new AO
replaces the Eikonal A0. Figure 1 shows this modification. Strictly speaking, the form of equation
I should also be modified since, in accounting for the ray deviations, the afline transformation is no
longer valid. Howevwýr, since this is a second order effect we have chosen to keep the form of equation 1
but use instead the new AO as the variable.

After some straightforward but tedious algebra the new A10 is found to be

= iAO = b I2r [p 2 cos(O) + e sin(O-)s()
p [p2 coe2(0) +q2 inl(#)+ 2.cos(#) sin(4i) If(-O~

82 +P 2 &
C M = +2)

sin(O) = 2(p _A)2  [4]
M2(p4 + S2)2

A = [m2(p + ) - 82]1/2

8 2 2 _ 2s :p~q - r

q = [r2 c092(0) + sin 2(0)]'/ 2

In the limiting cases of r --+ oo for prolates or r --* 0 for oblates AO becomes:

A10 2b{(tn2 
- cos2 0)(1/2) - sin 0} for prolates [5]

AO 2a{(m 2 - sin2 0)(1/2) - cos0} for oblates [8]
These expressions give good results when Q.v1 is evaluated for randomly oriented spheroids. They

are not always good for oriented spheroids however. The orientations for which the expressions do
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poorly are strongly weighted against in the angular averaging process. The angular averaging is carried
out as follows:

g.12 Q.Psino dO

f0'l psingd[

2.2 Edge Effects

Equation 7 gives by itself a remarkably close fit to Q.Ps for randomly oriented spheroids considering
the rather crude assumptions involved in its derivation. Equation 7 however approaches the large particle
asymptotic limit of 2 from below, and it is well known that Q.,, approaches that same limit from above.
The reason for this discrepancy is the neglect of edge effects. Jones7 has shown how to estimate these
edge effects for three dimensional convex bodies. As he clearly explains, near a glancing point the
body will behave approximately like a cylinder with its axis perpendicular to the surface normal (at the
glancing point) and the direction of propagation of the incident wave. The scattering and absorption
from all such cylindrical sections can be integrated around the projection of the penumbral curve to
give the total contribution of the edge effects to the extinction cross section. The projection is on to
the plane normal to the incident ray direction. The energy scattered per unit length of the cylinder
by region on its surface around the glancing point is proportional to CTBR 1/8 for the TE mode and
CTMR 113 for the TM mode, where R is the radius of curvature of the cylinder. The constants 0T2 and
07,AM are the fir*t order Fock terms. It can be shown that, for convex bodies, randomly oriented or
illuminated by a randomly polarized beam, (02., + cTM)/ 2 = co where c0o is a universal constant. Since
for the sphere co = 0.996193, as derived by Nuusenveig and Wiscombes, this value can be used for any
convex body. Therefore the edge contribution to the extinction efficiency of the body is

Q.do, = J R1/ 3 de (81

where S is the projected area of the body on a plane normal to the direction of propagation of the
incident wave and s is the arc length along the projection of the shadow boundary P on that same
plane.

From basic solid geometry for the spheroid the terms in [8] can be shown to be as follows:

S = rb 2p, do = bq'dX and R = br2q'
pa [9]

where q' = Vsin 2 X+p2cos2X

and X is the parametric angle of the penumbral ellipse. Thus substituting into [8] and using equation
13.1.9 from' we obtain

Qedis 4 cor 2/s / q/4/3 dx 10
ir b183P 2 Jo 10

2c= l 2 F(-2/3, 1/2; 1;(1 - l/p 2 )) (prolates) [11]
2CorIal
= r3 2F1(-.2/3, 1/2; 1; (1 -9)) (oblates) [12]

Jones7 derived a similar result but only for normal incidence. The hypergeometric function in the above
equations is readily approximatedI0 with relative error of less than 5.3 x 10-5 by

.999947 - 2.19081z + 1.51871z2 - .325449z3
2 F1(-2/3,1/2; 1; z) - 1 - 1.85884z + .947705z2 - .0847327z ' Izi :5 1. [13]
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The large particle limit for the spheroid is

Q•,s -- ý 2 + Q.ds.. [14]

We now wish to produce a term T which, when it multiplies [1], gives the same limit as [14] without
diverging as the size parameter goes to zero. An adequate expression for our purposes is:

T = 2- e-.,./ [15]

We used the same form of T for the sphere4.

2.3 Bridging Function

If we expand [1] in powers of w, we obtain the following result5

2 + w4 '
Q,, e{~ + - j+.**. [16]QV~ ="Re 83 144''

The linear and cubic terms are only present when the scatterer has finite absorption. The first-
order pure scattering term is quadratic in the Qv formula as opposed to quartic in the Rayleigh formula.
Adjustments of the constants will not bring about an asymptotic match. As in the case of spheres4

the approach taken to this problem was to directly use the Rayleigh approximation 11, and assure an
explicit bridging of our expression from Q,.y to QT as the size parameter increased. We found by
repeated trial and error that the most satisfactory formulation is given by:

=- Qraf [17]

where p is the following function of size parameter

1 = C, +- []

where x = AO/(m - coo 4) and a and y are adjustable parameters discussed below.
When x tends to 0 (b -- 0), p goes to infinity and Qpp becomes equal to the Rayleigh formula.

As the size p rameter increases, Q,.. usually grows to very large values and Q,=, approaches Q.T.
Note that our formula satisfies both asymptotes simultaneously. The behaviour of our approximation
in the transition region between the Rayleigh limit and the extended Eikonal-Fock limit is completely
controlled by the values of * and y in [18]. These are, in general, functions of both the complex and
real part of the index of refraction. We have found that the same expressions for a and y as those we
obtained for spheres4 were adequate for randomly oriented spheroids:

a + [(n _ 1)-_ !Vi- + [(n _ 1) + (,Vr .5k)] 2 (19]
nd 2

a= 3 - 1)'/2 + 3(n - )4 
(20]

+ (+-(n
k

Finally for randomly oriented spheroids we must integrate [17] over all orientations. This gives

= Q8 ,ppsine dO [21]

ff/2 psin dO
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It should pointed out that the bridging function is not necessary if Q.,f is only required outside the
transition region. In this case Qapp = Qray or Q-pp = QvT according to the region of interest.

3. RESULTS

Figure 2 shows the comparison between our approximate formula and the T-matrix calculation for
the approximate index of glass in the visible, n = 1.5 and aspect ratio r = 2. There is an excellent
general agreement over the complete range of b. The differences are mainly caused by the surface wave
resonances 12 which are not included in the approximation. However this effect is much less pronounced
than it is for the sphere, r = 1.

Another physically interesting case, but this time with a large absorption coefficient is shown in Fig.
3. This case is with m = 1.5 - 0.1i and r = 2. The strong absorption and the relatively small value n
combine to completely damp the surface wave resonances. Consequently the fit is excellent everywhere.
In this case our largest relative error is located in the transition region between the Rayleigh limit and
the extended Eikonal-Fock limit. This occurs at the smaller values of b, typically < 1. This effect
cannot be seen in Fig. 3 because of the scale used.

Figures 4 and 5 contain examples where the T-matrix method as coded by P. Barber begins to
show numerical instabilities because of ill conditioning. For large values of k the internal field is very
small and therefore it is difficult to achieve accurate boundary matching conditions. Large values of
r also create ill conditioning due to the excessive curvature of the surface of the spheroid. Figure 4 is
for m = 1.5 - 1.0i and r = 2 and Fig. 5 is for m = 1.5 and r = 4. For the sake of clarity, the large
oscillations due to ill conditioning, which occur beyond b s 7, are not shown in Fig. 4. More modest
but still serious oscillations are shown in Fig. 5. Additional confirmation that the T-matrix code is
unstable at this point was obtained by analysis of the backscatter efficiency. Up to the point where the
T-matrix code is deemed valid our approximation is very good.

A case of large aspect ratio is shown in Fig. 6 and is compared with the randomly oriented
cylinders13 . Here m = 1.5 for both cases and r = 100 for the spheroids (larger aspect ratios e.q.
r = 104 make no essential difference). It is interesting to note that the phase of the diffraction peaks
are not well matched and the magnitudes of the peaks and troughs are quite different. The spheroid
shows a very strong damping as a function of size parameter. Most of the contribution to Q.'t occurs at
normal incidence for both infinite cylinders and spheroids of very high aspect ratio. The location of the
diffraction peaks is therefore insensitive to a and depends only on the semi-minor axis of the spheroid
b or the radius of the cylinder. The damping of the diffraction peaks is weaker and their location is
different for infinite cylinders than prolate spheroids because the phase difference is constant along the
cylinder axis but varies from a maximum to zero along the axis of the spheroid. This give rise to the
engaging possibility of easily distinguishing the extinction of randomly oriented long cylinders from
that of high aspect ratio randomly oriented prolate spheroids. The insensitivity of Q.,t to sufficiently
large aspect ratios implies that it is also insensitive to the length distribution. We do not know of any
experimental or theoretical values with which to compare this type of result and thus we consider it
new.

Figure 7 is a contour plot of the maximum percent error between the approximate formula Q~p,
and Q,, as calculated by the T-mati'ix method for the semi-major axis size parameter a varying from
0.1 - 30. in steps of 0.1. The real part of the index ranges from 1.0 to 2.0 and the imaginary part of the
index ranges from 10-s to .1 and r = 2. For n > 1.05, errors greater than 5% occur due to resonances.
For n < 1.05, the large percentage errors are caused by the transisiton region. Similar results can be
obtained for other aspect ratios.

All our approximate Q.,g, results in this section were produced at a rate of greater than 104 times
faster than by the T-natrix code. If larger size parameters or larger refractive indices were requested
a much larger speed-up factor would be obtained.

4. LIMITATIONS
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The formula for Qovs, [21], has no limitations in terms of size parameter or aspect ratio. In its
current form the formula has refractive index limitations. These fall under three categories:

"* Very large n (i.e. n > 10);
"* Very large k (i.e. k > 1);
"* For n > 2 and values of b in the transition region (approximately between the Rayleigh region and

the first diffraction peak).
For very large n the physics in Qat must be modified. In particular the first Fock constant changes

towards its value at n = oo (co = .0659708) as n increases due to changing boundary conditions8,14

and the Rayleigh scattering coefficients are increased from 8/3 to 10/3 12 due the increasing magnetic
dipole contributions.

As in the case of spheres, for spheroids in the Rayleigh limit with very large k, the equation for
Qb,, must include a complicated cubic term5 .

The restriction in item 3. above is due to the fitting of a and y' over a restricted range of n 4
This restriction is not present outside the transition region in which case only QT or QGy needs to be
computed.

CURRENT AND FUTURE WORK

The limitations, as mentioned in the last section have or are being overcome by additional physics.
Additionally, the numerical integrations that are required in the randomizing process have been replaced
by approximate analytic expressions that will retain the essential physics, avoid numerical problems
that occur from highly oscillatory kernels and allows for the extinction efficiency to be computed and
additional 6 times faster. Work is currently focussing also on the absorption efficiency. All this work
will be reported in forthcoming papers.
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Fig. 1 Sche ..tic diagram of the extended Eikonal approach. A0', the phase difference is given by L(m -

coo 4,). Where 4, is the deflection angle of the central ray and 0 is the spheroid orientation angle.
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ABSTRACT

A theoretical procedure has been developed for the determination of the internal and exter-
nal electromagnetic fields for a monochromatic beam incident upon a homogeneous particle of
arbitrarily-defined shape. The procedure is best suited for the analysis of near-spherical particles
(i.e., particles which deviate from a sphere by plus-or-minus a few tenths of a radii). Verification
and demonstration calculations are presented. Also presented are calculations investigating the
effect of particle shape on internal heating distributions for C0 2 laser heated water droplets, and
cal":,i. tions investigating the effect of surface deformation on resonance excitation within an oth-
e",-.,'e spherical particle. Future work will include consideration of modifications of the theoretical
procedure that would allow solutions for elongated particles, and the comparison of theoretical
calculations with corresponding experimental measurements.

I. INTRODUCTION

In an earlier work, 1 equations were derived for the theoretical determination of the internal
and external electromagnetic fields for a beam incident upon a homogeneous spherical particle. A
procedure has been developed that now permits the determination of the electromagnetic fields
for a beam incident upon a homogeneous particle of arbitrarily-defined shape. This new approach,
to be referred to as the irregularly-shaped particle/arbitrary beam theory, appears to be most
applicable for the analysis of near-spherical particles (i.e., particles which deviate from a sphere by
plus-or-minus a few tenths of a radii). The theory could be used, for example, to determine the
electromaghetic fields for a laser beam incident upon a small liquid droplet that has been deformed
in shape due to aerodynamic, thermal, or electromagnetic stresses.

Previously, Yeh, Colak, and Barber,2 have also considered the beam incident upon an
irregularly-shaped particle problem. In the approach of Yeh, Colak, and Barber,2 the incident field
is expanded in a plane wave spectrum and a superposition of plane wave solutions, obtained using
the extended boundary condition method (EBCM), 3 is performed. In our theoretical development,
the incident field is utilized directly, and a superposition of solutions is not necessary. In addition,
the primary emphasis of the work of Yeh, Colak, and Barber2 concerned the determination of far-
field scattering patterns. In our paper, the primary emphasis is the determination of the internal
and near-surface electromagnetic field distributions.
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11. THEORETICAL DEVELOPMENT

Only a general description of the irregularly-shaped particle/arbitrary beam theory will be
presented here. Detailed equations are given in Ref. 4.

The specific problem considered is that of a monochromatic electromagnetic beam within an
infinite, nonabsorbing, dielectric medium incident upon a particle of arbitrarily-defined shape. The
particle and the surrounding medium are each homogeneous, linear, isotropic, and nonmagnetic
(A = 1). The geometrical arrangement is shown in Fig. 1. The coordinate system origin is
located within (and near the center) of the particle. The particle has an associated characteristic
radius, a, and all spatial quantities are nondimensionalized (as indicated by a tilde) relative to
this characteristic radius. Though the theoretical development is applicable for any incident beam
for which a mathematical description is known, for the calculations presented in this paper, a
focused, linearly-polarized, Gaussian-profiled (TEMOO mode) beam will be assumed. A fifth-order
corrected mathematical description of the electromagnetic field components for the Gaussian beam,
as previously presented in Ref. 5, is utilized for the analysis. All electromagnetic quantities are
nondimensionalized relative to an electric field magnitude characteristic of the incident beam, E0 .
For the Gaussian beam, E0 is the electric field magnitude at the focal point, which can be related
to the beam power by an expression given in Ref. 5.

The input parameters of the analysis are as follows: (1) the particle shape function, f(0,€)
(A nondimensionalized single-valued function of the spherical coordinate angles that defines the
surface of the particle. For a centered sphere, this function would equal to one.), (2) the particle
size parameter, a = 2ra/A 2,,t (A,., is the wavelength within the surrounding medium.), (3) the
complex relative refractive index of the particle, fi = V/7,t/C7 ext, (4) the nondimensionalized beam
focal point coordinates, (0o, go, zo) (The location of the focal point of the incident beam relative
to the particle.), (5) the nondimensionalized beam waist radius, w0o, (6) the beam propagation
direction angle, Obd (The beam is assumed to propagate parallel to the x-z plane. Obd is the angle
of beam propagation relative to the y-z plane.), and (7) the beam polarization orientation angle,
4 bd (For Obd = 00, the beam electric field polarization is parallel to the x-z plane. For 4 bd = 90',
the beam electric field polarization is perpendicular to the x-z plane.).

The procedure for determining the electromagnetic fields for a beam incident upon a particle
of arbitrarily-defined shape is a generalization of the beam incident upon a spherical particle de-
velopment presented in Ref. 1. The electromagnetic field is divided into three parts: the incident
field (the field that would exist in the absence of the particle), the scattered field (the difference
between the external particle field and the incident field), and the internal field (the field within
the particle). The external field is the sum of the incident field (assumed known) and the scattered
field: fe., = P) + i(s) and fi`e-t fl(i) + f1(). The scattered field and the internal field are to
be determined. The solution is formulated in spherical coordinates, (r, 0, €).

The electromagnetic field components of the unknown scattered and internal fields are ex-
pressed in the form of general series expansions (obtained from a separation-of-variables solution of
Maxwell's equations) involving products of radial-dependent Riccati-Bessel functions (01, Xi) and
angularly-dependent spherical harmonic functions (Ym), as were derived in Ref. 1. It is assumed,
even though the particle is not spherical, that the scattered field is appropriately expressed in terms
of outgoing spherical waves (ý(') - 01 - iX,) and the internal field is appropriately expressed in
terms of standing waves (01 only). The validity of these assumptions will be discussed in Sec.
III. The series expansions for the electromagnetic field components are each of the form of double
summations over the indexes I and m. If L is the maximum value of the index I required for series
convergence, there will then be

L

N = E(21+ 1) (1)
1=1

terms in each series expansion. (N equals the number of I and m combinations for a given L.)
The series coefficients for the scattered field (am, bir) and the series coefficients for the internal

field (ct,,dtm) are determined by applying the four boundary conditions associated with the fact
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that the tangential electric and magnetic field fields are continuous across the particle surface.
Evaluating the four boundary conditions at a particular angular position (0, 40) and then expanding
these equations in spherical harmonics (Y,,,n,) provides a set of 4N linear, algebraic equations for
the determination of the 4N values of the series coefficients (agin,bm,,csm,din). Once the series
coefficients for the scattered and internal fields are known, the series expansions can be used to
determine the electromagnetic field anywhere internal or external to the particle.

If the particle is axisymmetric [f(8), independent of d'], then major simplifications in the
solution procedure occur. in particular, the series coefficients for each index m can be determined
by solving a set of 4(L - Imi + 1) linear, algebraic equations (two sets of 2(L + 1) equations for m =
0). Thus, for the axisymmetric case, it is required to solve (L + 2) "small" sets of linear, algebraic
equations, instead of a single "large" 4N set of linear, algebraic equations, as is necessary for the
general case.

III. APPLICABILITY

As previously mentioned, it is assumed that the scattered field is appropriately expressed in
terms of outgoing spherical waves (ý(1) - Oi- iXI) and the internal field is appropriately expressed
in terms of standing waves (01 only). These assumptiols are sometimes referred to as the "Rayleigh
hypothesis." Even though the validity of the assumptions associated with the Rayleigh hypothesis
can be questioned for the case of the irregularly-shaped particle, Chew6 has recently shown that,
on a fundamental level, the Rayleigh hypothesis approach and the extended-boundary-condition-
method (EBOM) are essentially equivalent. For both of these methods, the resultant matrix for the
solution of the series coefficients describing the fields becomes ill-conditioned (small changes in the
terms of the coefficient matrix may produce large changes in the solution vector) for the analysis of
elongated particles. The irregularly-shaped particle/arbitrary beam theory, similar to the EBCM,
is best suited for the analysis of near-spherical particles. A further discussion of the applicability
of the theory is presented in Ref. 4. All calculations in this paper, with the exceptions of Figs. 6
and 7, represent fully converged solutions.

IV. VERIFICATION CALCULATIONS

The irregularly-shaped particle/arbitrary beam theory was verified by making direct compar-
isons with known solutions. Calculations were performed for a spherical particle displaced from the
origin. If the sphere is displaced along the z-axis, then the particle shape function is a function of
the polar angle, f(0), and the axisymmetric irregularly-shaped particle/arbitrary beam theory can
be applied. However, if plane wave illumination is assumed, the electromagnetic field distribution
should be identical to that of plane wave Lorenz-Mie theory.

As an example, Fig. 2 presents a plot of the normalized source function (S =- 1EI2/E2)
distribution in the x-z plane for a 300 angle of incidence plane wave incident upon a centered
sphere of a = 8.0 and fi = 1.2 + 0.02i. Figure 2 is the Lorenz-Mie theory solution rotated 300
about the origin in the x-z plane in order to account for the angle of incidence of the plane wave.
Figure 3 was generated using the axisymmetric theory for identical conditions as Fig. 2, excet that
the sphere has been displaced along the z-axis by a distance of Ai = +0.25. A colapaiison of Figs.
2 and 3 shows that the normalized source function distribution of the displaced sphere (Fig. 3)
calculated using the axisymmetric theory is identical to the normalized source function distribution
of the centered sphere (Fig. 2) calculated using Lorenz-Mie theory, except that the entire solution
of Fig. 3 (both internal and near-field) has been shifted along the z-axis by a distance of Ai
0.25, as would be expected.

A similar approach was used to confirm the general irregularly-shaped particle/arbitrary beam
theory, except the sphere is now displaced along the x-axis so that the particle shape function is
a function of both the polar and azimuthal angles, f (0, 0). Figure 4 shows the normalized source
function distribution for a 300 angle of incidence plane wave incident upon a centered sphere of a =
2.0 and ft = 1.2 + 0.02i as determined using Lorenz-Mie theory. Figure 5 provides the normalized
source function distribution calculated using the general theory for conditions identical to those of
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Fig. 4, except that the sphere has been displaced along the x-axis by a distance of Ai = 0.1. A
comparison of Figs. 4 and 5 shows that the normalized source function distribution of Fig. 5 is
identical to that of Fig. 4, except that the entire solution has been shifted along the x-axis by a
distance of A! = +0.1, as would be expected.

Another confirmation of the arbitrarily-shaped particle theory was obtained by making§ com-
parisons with an existing nonspherical, regular geometry solution. Asano and Yamamoto7 have
developed an analytical solution for the determination of the electromagnetic fields for a plane
wave incident upon a spheroidal particle. In Ref. 7, far-field scattering patterns for a 00 angle of
incidence plane wave incident upon prolate and oblate svheroids of various size parameters and
various axis ratios are presented. Asano and Yamamoto plotted far-field normalized scattering
intensity,

Sr = lim a2i 2 •Re(E (i')2)lp:0 c E012 ,(2

versus scattering angle (0) in the plane of incident electric field polarization and in the plane
perpendicular to the incident electric field polarization. This was done for size parameters, c, of I
througUi 7, where the c size parameter of Asano and Yamamoto7 is related to the size parameter,
a, of this paper by

a c(a/b) (3)V/(-alb)l - l

where a/b is the major to minor axis ratio. An index of refraction of fi = 1.33 + 0.00i was assumed.
The axisymmetric irregularly-shaped particle/arbitrary beam theory was used to calculate far-

field scattering patterns using parameters consistent with those used in Asano and Yamamoto.7
Figure 6 presents the far-field scattering patterns for a 0' angle of incidence plane wave incident
upon a prolate spheroid of a/b = 2 axis ratio as calculated usine, the axisymmetric theory. Figure
6 can be directly compared with Fig. 3 of Asano and Yamamoto.7 F~gure 6 is a vertically-unscaled,
semi-log plot with each vertical division representing a factor of ten difference in normalized scat-
tering intensity. The forward-scattered (0 = 00) and the back-scattered (0 = 1800) normalized
scattering intensity values are shown for each size parameter. The scattering patterns generated
using the axisymmetric theory agreed within a few percent with those of Asano and Yamamoto.7
For the prolate spheroid, the forward-scattered values agreed with an average deviation of 0.3%
and the back-scattered values agreed with an average deviation of 3.2%.

The far-field scattering patterns for an oblate spheroid of a/b = 2 axis ratio, calculated using
the axisymmetric theory, are given in Fig. 7. Figure 7 can be directly compared with Fig. 5
of Asano and Yamamoto.7 Again, the two results were in general agreement. The back-scattered
values agreed with an average deviation of 1.1% and the forward-scattered values agreed with an
average deviation of 6.1%.

As was previously discussed, the theoretical procedure developed in this paper is best suited for
the analysis of near-spherical particles. The far-field scattering calculations for the a/b=2 axis ratio
prolate/oblate spheroids of Figs. 6 and 7 were not fully converged solutions. For each case, L was
increased until the algebraic equations became too ill-conditioned to permit accurate numerical
solution. For the maximum permissible value of L, the far-field scattering intensities were still
changing by plus or minus a few percent for each increment in L. This lack of full convergence may
explain the slight difference of the results of Figs. 6 and 7 with the comparable results of Asano
and Yamamoto. 7

V. TIGHTLY-FOCUSED BEAM ON AN OBLATE SPHEROID

In order to demonstrate the ability to determine the electromagnetic fields foi a focused beam
incident upon a nonsphierical particle, calculations were performed for a tightly-focused beam inci-
dent upon an oblate spheroid of axis ratio a/b = 1.2, a = 15.0, and hi = 1.3 + 0.03i. The angle
of incidence (Abd) was herd at 00 and the incident electric field polarization was in the x-z plane
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(kbd = 00). Figure 8 shows the internal normalized source function distribution in the x-z plane for
an incident plane wave (t0 :*o c). Only the internal field distribution is presented (the near-field
values were artificially set to zero) so as to clearly show the nonspherical shape of the particle.

Figure 9 is for the same conditions as Fig. 8, but instead of plane wave incidence, a beam (tv0 =-
0.667) is focused at the center of the particle (10 = =o = io = 0.0). The normalized source function
distribution for beam illumination is distinctly different than that for plane wave illumination, as
can be seen by comparing Figs. 8 and 9. Figure 10 is for the same incident beam conditions as Fig.
9, except that the focal point of the beam has been moved up the x-axis to a position halfway along
the major axis of the oblate spheroid (10 = 0.5, go = Jo = 0.0). Figure 11 shows the normalized
source function distribution with the beam focused at the edge of the particle (to = 1.0, 10 =
= 0.0).

VI. CO2 LASER HEATING OF SPHEROIDAL WATER DROPLETS

As an application of the axisymmetric irregularly-shaped particle/arbitrary beam theory, the
effect of nonsphericity on the spatial heating distribution within a water droplet heated by a CO 2
laser beam (A\ = 10.6pm,fi = 1.179 + 0.072i) was investigated. The heating rate per unit volume
within the droplet is directly proportional to the normalized source function, S. Equal volume
prolate/oblate spheroidal water droplets (&sphere = 8.0, daphere • 27pm) of major to minor axis
ratios (a/b) of 1.1 and 1.2 were analyzed. Plane wave incidence (to "* oo) was assumed and three
particle orientations were considered: (Case A: Obd = 00, 0kbd = 00), (Case B: Obd - 900, Obd = 00),
and (Case C: Obd = 90', Obd = 900).

For the spherical particle (a/b=1), Cases A, B, and C are indistinguishable, and the maximum
normalized source function value within the spherical droplet was determined to be Smaz = 1.019.
The effect of particle shape and orientation on maximum source function is summarized in Table
1. For orientation A, the prolate shape results in an increased value of Sma. (relative to that of
an equal volume sphere) while for orientation C, the oblate shape results in an increased value of
Smx As an example of the effect of particle shape on the spatial distribution of normalized source
function (heating), Fig. 12 gives the normalized source function in the y-z plane for orientation A
for a.) a sphere, b.) a prolate spheroid with a/b = 1.1, and c.) a prolate spheroid with a/b = 1.2.

VII. EFFECTS OF SURFACE DEFORMATION AT RESONANCE

The beam incident upon an arbitrarily-shaped particle theory permits electromagnetic field
determinations for particles of irregular geometry. As an example of an application, the axisym-
metric theory was used to investigate the effect of a surface deformation on resonance excitation
within an otherwise spherical particle. (The effect of focal point positioning on resonance excitation
was investiiated in Ref. 8.) The particle is assumed spherical except for an axisymmetric surface
deformation located within the polar angle interval 7r/8 <9 < 37r/8:

1 for 0 < 7r/8

1 + C/2(1 + cca[8(0 - 7r/8) - 7r]) for 7/8 < e < 37r/8 (4)

1 for e > 37r/8

The height of the deformation, c, can be either positive (protrusion), negative (depression), or zero
(perfect sphere). Plane wave illumination with a 00 angle of incidence is assumed which provides
a degenerate condition such that all series coefficients except m = ±1 are identically zero. In
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addition, the m = +:1 terms can be combined s that the double summation electromagnetic field

component expansions reduce to single summations over th• rqdial index,

L

(5)

with the associated single index series coefficients: al, b ch di
Assuming an index of gefraction of fi = 1.334 + 1.2x10-i (0.5145_gm wavelength argon-ion

laser incident upon water)," a spherical particle resonance was located. The resonance chosen was
the 34th mode, 1st order magnetic wave-(TE mode) resonance which occurs at a = 29.285. At this
size parameter, the magnitude of the 34th radial index magnetic wave internal field series coefficient
(1d34-4 attans a peak value, as shown in Fig. 13.

The effect oT a surface deformation on the excitation of this resonance was investigated by
determining 1d34 asa function of and a. In Fig. 14, d341 is plotted versus size parameter for c =
0.00, ±0.01, and 10.02, and in Fil, 15 Id34 1 is plotted versus size parameter for e = 0.00 and -0.05.
As can be seen in Figs. 14 and 15, the presence of the surface deformation shifts the resonance
to smaller size parameters for protrusions (c > 0) and to larger size parameters for depressions
c < 0). Surface deformations also decrease the quality of the resonance with protrusions (c > 0)

having a greater effect than depressions (C < 0) (for these particular conditionsE.
for small deformations, I[ .< 0.02, resonance is apparently retained when t e circumference of

the deformed particle matches the circumference of the corresponding resonant spherical particle.
This observation is illustrated by the results presented in Table 2.

VIII. CONCLUSION

A theoretical procedure has been developed for the determination of the internal and exter-
nal electromagnetic fields for a monochromatic beam incident upon a homogeneous particle of
arbitrarily-defined shape. The procedure is apparently best suited for the analysis of near-spherical
particles and, for example, could be used to analyze laser beams interactions with liquid droplets
that have been slightly distorted in shape due to aerodynamic, thermal or electromagnetic stresses.
Future work will include consideration of modifications of the theoretical procedure that would allow
solutions for elongated particles, and the comparison of theoretical calc ations with corresponding
experimental measurements.
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FIG 1. Geometrical arrangement for beam incident upon an arbitrarily-shaped particle analysis.
The beam propagates parallel to the x-z plane.
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6.0

3.0-

0.00

FIG 2. Normalized source function distribution in the x-z plane for a. 300 angle of incidence plane
wave incident upon a centered sphere. a = 8.0, ft 1.2 + 0.02i, ibo =oo (plane wave), ebd = 300,
and Obd 900.
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3.0

0.0

FIG 3. Normalized source function distribution in the x-z plane for a 300 angle of incidence planewave incident upon a sphere displaced along the z-axis by Ai +0.25. a =8.0, ft = 1.2 + 0.02i,
=v oc (plane wave), 6bd = 300, and O'bd =900.
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1A 1.0

0.0

0.00

.FIG 4. Normalized source function distribution in the x-z plane for a. 300 angle of incidence plane
wave incident upon a centered sphere. a =2.0, ft =1.2 + 0.021, 'ho = oo (plane wave), Obd 30,1
and 4'bd =900.
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FIG 5. Normalized source function distribution in the x-z plane for a 300 angle of incidence plane
wave incident upon a sphere displaced along the x-axis by ASi = +0.10. a = 2.0, At = 1.2 + 0.02i,

i-D= oo (plane wave), ebd = 300, and Obd = 900.
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12.0

3.0

',8.0

0.0

FIG 8. Internal normalized source function distribution in the x-z plane for a 00 angle of incidence
plane wave incident upon an oblate spheroid of axis ratio a/b = 1.2. a = 15.0, fi = 1.33 + 0.00i,
CDo o oo (plane wave), 0 = o= -0.0, bd- 00, and 10bd = 00.
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0.5
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0.0 0.0o

FIG 9. Internal normalized source function distribution in the x-z plane for a 00 angle of incidence
focused beam incident upon an oblate spheroid of axis ratio a/b = 1.2. On-center focal point
positioning. a = 15.0, A = 1.33 + 0.00i, tbo = 0.667, io = go = io = 0.0, Obd = 0*, and 'kbd = 00.
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2.0

1.5-

*11.0-

0.5

0.0

FIG 10. Internal normalized source function distribution in the x-z plane for a 00 angle of incidence
focused beam incident upon an oblate spheroid of axis ratio a/b = 1.2. Mid-ayis focal point
position~ing. a 15.0, ft 1.33 + 0.00i, tbo 0.667, lo =0.5, go =o 0.0, Obd 0%, and okbj
00.
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1.5

0.5

0.0

FIG 11, Internal normalized source function distribution in the x-z plane for a. 00 angle of incidence
focused beam incident upon an oblate spheroid of axis ratio a./b = 1.2. On-edge focal point
positioning, a = 15.0, ft 1.33 + 0,00i, tZv = 0.667, io = 1.0, go = 10.=00, Obd Q0, and 06~d
00.
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0.005

E0.00

0.004-

0.00.3-

0.002-

0.00 1

0.000-
29.185 29.235 29.285 29.335 29.385

FIG 13. Id14 I vu.rsus a for a spherical particle (t0.00). hi 1.334 + 1.2x 10-9 i.

0.005--- 
_ _ _ _ _

00.04 / E - 0 .0 1E

0003 £ ~~+0.010 00= fO 2

0.002-

0.001-

29.185 29.23.9 29.285 29.335 29.385
a

FIG 14. Id34 1 versus a for sý.her7 dij dar ti1ce with surface deformations of c 0.00, ±0.01, and10.02. hL = 1.334 + 1.2xl1 0 .
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0.005
= 0.00

0.004

0.003 = -0.05

0.002

0.001 - = +0.05

0.000 I -
29.035 29.135 29.235 29.335 29.435 29.535

FIG 15. 1d 341 versus cx for bplierical particle with surface deformations of C 0.00 and ±0.05. n h
1.334 + 1.2x10-9i.

A B C
prolate)1 .1  1.405 0.919 1.029

(+38%) (-10%) (+1%)
prolate) 1.2  1.731 0.889 1.043

(+70%) (-13%) (+2%)

"oblate),., 0.981 1.098 1.280
(-4%) (+8%) (+26%)

oblate)1 .2  0.969 1.128 1.448

(-5%) 1-(+11%) (+42%)

TABLE 1. Maximum normalized source function value (and % difference from spherical particle

maximum value) for equal volume prolate/oblate spheroids of major to minor axis ratios of 1.1

and 1.2 and of orientations A, B, and C for plane wave incidence. Parameters are for a CO2 laser
incident upon a water droplet. 0,ph.. = 8.0 and ft = 1.179 + 0.072i.
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Circumference [Aeg] arc, Circumference [A\,]t
at a = 29.285 at ar.e

-0.02 29.212 29.355 29.282
"-0.01 29.248 29.321 29.284

0.00 29.285 29.285 29.285
+0.01 29.322 29.248 29.285

÷+0.02 29.358 29.208 29.281

TABLE 2. Circumference (in units of Xt) for spherical particle with surface deformation at the
34th, 1st order magnetic wave resonance for c = 0.00, ±0.01, and ±0.02. ft = 1.334 + 1.2x 10"i.
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ABSTRACT

Light scattering at 00 by small particles has generally not been
studied because of the difficulties associated with separating the
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scattered beam from the main beam, The importance of this

phenomenon will be discussed and an experimental resolution of the

difficulties will be described. Data for 11 gm polystyrene spheres

suspended in water will be presented for scattering over the angular

range, -0.5* to 05*, with a resolution of 0.010. These data will also be

presented for scattering at 01 as a function of particle concentration.

This work will be extended to obtain absolute scattering

amplitudes and phases over a wider range of angles centered at zero

degrees. Work is also continuing on Mueller matrix measurements of

sphere aggregates; femtosecond time resolved scattering from single

levitated particles: and interactions of ultra high power, low energy

laser pulses with aerosols.

1. INTRODUCTION

The focus of this paper is to investigate the light scattering by

small particles at and near an angle of zero degrees. Light scattering by

small particles has been the subject of intense investigations for many

decades but all experimental work to date has been limited to angles

from the near forward direction1"3 to the back scattering direction.

The limiting experimental factor in the forward direction, 0 =00, is the

unscattered plane wave which is superimposed on the scattered

spherical wave. 4.5 As Van de Hulst6 stated, 'An experiment by which

this spherical wave can be observed is impossible ....... 9 Actually it is

not Impossible. but there has, in fact. been little previous experimental

success in attempts to separate the two waves in the forward direction.

Nevertheless, small angle scattering Is extremely important.

Because of its shetr magnitude at small angles, it significantly affects

light propagation through dust. smokes, haze, and the atmosphere in

general. It thus plays a critical role in Imaging. laser propagation, etc.

Zero degree scattering may also be extremely useful in providing a

classification scheme for all particles via their symmetries. Specifically,
the Mueller matrix elements at a scattering angle of zero degrees
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provide six symmetry classes for particles, including the class of

particles with no symmetries. 7

Measurements of scattering at zero degrees are especially

important because of their fundamental relation to extinction via the

optical theorem. 1 Specially the total extinction cross section CEX-T is

given by,

jj- Re[S(0 0 )]

where, S(0°) is the forward scattering amplitude and k is the wave
vector of the incident wave. Thus, a measurement of the forward

scattering amplitude gives the extinction cross section.

Next, there should be a coherent scattering effect at zero degrees

from monodisperse suspensions of identical particles 1 . Observations of

this effect have not been reported, but it should produce a pronounced
peak in the scattering function at zero degrees: its amplitude Is

proportional to the square of the number of particles. For example,
consider the forward scattering from a suspension of identical particles

in a cylindrical volume of radius R as in Fig. 1

L

R- 1.Ocm L-O.1 cm •-514.5nm

Fig. 1. Scattering geometry for forward scattering
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Assuming the particle distribution is uniform and that the light
propagation is along the axis of the cylinder, the angular width (FWHM)
of this forward scattered peak, shown in Fig. 2. can be written as,

AOjFWHM = 1.12.L
R

where A. is the wavelength of light. Note that this is slightly over twice
the angular width (FWHM) of the diffraction maximum of a circular
aperture of the same radius.

0.01

0.008.1

0.006

0.004

0. 002

0.002 0.004 0.006 0.008 0. 01.

Scattering Angle

Fig. 2. Forward scattered intensity vs scattering angle for
a collection of monodisperse particles.

Finally, since the strong forward scattering Is coincident with the
direct beam, It can produce erroneous results in experimentally
measured optical extinction coefficients. Several algorithms have been
developed to overcome these difficulties. 8 A precise measurement of
the scattering at zero degrees will provide a direct test of these
computations. The need far a measurement of scattering at and near
zero degrees is obv.lous.
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The only measurement of the forward scattering at zero degrees
from isolated Mie spheres was reported in 19899. This nice
experiment took advantage of the Guoy phase shift at the waist of a
focused Gaussian beam. However, it neglected the scattering phase
shift and thus it is applicable only to very small particles. By contrast.
the present work is directed towards all particles including larger ones
for which there is a significant scattering phase shift

The identifying characteristic of the light scattered at zero degree
is its shift in phase. Due to the Brownian motion, this phase shift has a
spatial time dependence when light is scattered form a suspension of
particles. However, linear interferometric techniques to separate the
scattered light from the unscattered have been unsuccessful due to
systematic problems. Our new technique, which takes the advantage of
the time varying phase shift, will measure light scattering at zero
degrees from particle suspensions as well as from isolated scatterers.
The approach is based on the transient energy coupling between
coherent light beams 10 -12 in a photorefractive BaTiO3 crystal.

lUGHT BEAM COUPLING IN BaTIOs

Two beam coupling in BaTiO 3 has been discussed by several
authors13 .14 and its application to the present work has been previously
discussed1 s. Briefly, two coherent light beams 110 and 120 interfering in
a BaTIO 3 crystal produce a space charge field due to charge migration
(see Fig. 3). This periodic space charge field modulates the refractive
index of the medium through the electro-optic interaction, producing
an index grating. For BaTiO3 , in the absence of an external electric
field, this index grating is x/2 phase shifted from the interference
pattern1 3," 4 . The grating can diffract light from the beams which create
it and thus energy is coupled between the two beams. As a result, one
beam (12) emerges from the crystal with a greater intensity, while the
other beam (I,) is attenuated. For our experiment I10 is referred to as
the object beam, and 120 as the reference beam. With correctly chosen
parameters, greater than 99% of the energy from the object beam 110
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can be coupled into the transmitted beam 12 by using a 00 cut BaTUO 3

crystal.

C -,

20

110

Fig. 3. Beam coupling in Ba'nO3

The transient nature of the coupling comes from the finite
response time 'r of the crystal. The formation and the erasure of the
Index grating requires this finite time IC which Is inversely proportional
to the total light intensity14. In Ba:71O3 the value of T ranges from a few
seconds at very low light intensities (mW/cm-2 ) down to nanoseconds
at high intensities (MW/cm' 2). If one beam changes its position or
phase rapidly compared with 'r, a phase mismatch between the light
interference pattern and the grating occurs causing a sudden change in
the steady state intensities of the two transmitted beams. This Is
known as transient energy coupling ('FEC). Any changing part of the
transmitted object beam 11 is highlighted in a dark background. The
amount of energy that couples in a sudden phase mismatch depends on
the reference beam Intensity.

Due to Brownian motion, small particles in a solution move several
wavelengths in a millisecond. Consequently, the light scattered from
these particles undergoes a time varying phase change and thus, at can
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be separated from the unscattered light by using transient energy
coupling. Furthermore, since this is a real time holographic technique
which continuously subtracts the previous picture from the current, the
scattering from stationary parts of the instrument is removed from the
object beam. For example, scattering from imperfections in the cell
windows is not transmitted.

3. TE PEnMMNT

A schematic of our experiment for measuring forward light
scattering is shown in Fig. 4. The cw Ar+ laser (514.5 nm) is polarized
in the plane of incidence and the c- axis of the crystal is as shown. The
incident laser beam is split into a reference beam and an object beam.

POL

BEAM EXPANDER

SAMPLE CELL

REF.OBJ. BBAM

DET.

Fig. 4. Experimental set up to measure forward scattering
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The reference beam is then split again. The object and reference
beams follow equal optical paths before they are mixed again in BaTIO 3

crystals. The object beam is expanded and collimated to a 33 mm
diameter to reduce the beam divergence to 0.001°. This beam is then
passed through a 15 cm long, 7.5 cm diameter quartz cell, which
contains a water based suspension of polystyrene spheres. The average
diameter of the spheres was 11 un and the standard deviation was 1.9
grm. The laser power incident on the sample cell was 7 mrW. The light
transmitted through the sample (scattered + unscattered) was collected
and focused onto two successive BaTIO3 crystals as in Flg.3. Inside the
two crystals, the two reference beams (REF 1 and REF 2) couple with
the object beam and the unscattered portion of the object beam is
filtered out via photorefractive coupling.

A 5 mm BaTiO3 single crystal cut parallel to crystal axes can
produce 99% extinction of the object when large incidence angles are
used. This extinction Is not sufficient for scattering measurements
since the scattered component of the beam is weak compared to the
unscattered component. By using two BaTIO 3 crystals in series we
achieved about 99.9% extinction of the object beam or 1000:1
extinction ratio. The two crystals were oriented so that each one
produced approximately 97% extinction of the object beam intensity.

The use of two crystals instead of one longer crystal has several
advantages. In one long crystal a long interaction length cannot be
appropriately maintained since the two beams follow slightly curved
paths when they couple through the index grating. In addition, a
uniform grating cannot be maintained along the crystal since it depends
on the ratio of the intensities of the two coupling beams. These
problems are not present in the two crystal scheme since each crystal
is short and two separate reference beams are used. The two crystal
scheme can also suppress the crystal generated scattering noise. The
strong object beam can undergo scattering in the crystal and send some
light in the forward direction. Since the phase of this scattered light is
constant in time, the second crystal conveniently subtracts it from the
object beam when two crystals are used. However, there is a significant
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loss of the signal due to large Fresnel reflections at the four faces of the

two crystals.

After filtering through the two crystals, the object beam consisted
mainly of the forward scattered light from the moving polystyrene

spheres in the sample cell. This light is focused onto a 70 plm pinhole

and is detected in a photomultiplier tube (PMT). For one measurement.

the PMT signal was recorded as a function of a increasing concentration
of scatterers In the cell. For the second, the pinhole-PMT assembly was

scanned across the object beam using a fine translational stage and the

angular dependance of the signal was recorded for the range from -0.20

to 0.20.

Fig.5 shows the the results for the scattered intensity at 00 as a

function of the concentration of scatterers in the suspension. The error
bars represent the statistical fluctuations of each data point. For low
concentrations, the signal increased monotonically with the
concentration, indicating increased scattering as more particles wcre

150-
11 gm spheres, wavelength-S1 4.5nm

f
0100

,50
C

2

0~
024 B 10

Concentration (arb.unts)

Fig. 5. Forward Scattering vs Particle Concentration
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added. This is positive evidence to confirm that the photorefractive
crystal has separated the scattered light from the unscattered. Note

that the total intensity transmitted by the sample decreases as the
concentration of scatterers increases but that the scattering at zero
degrees should increase as we observed. However, for very large
concentrations, a decrease in the signal is observed that is believed to

be due to multiple scattering in the polystyrene suspension and has

been discussed in detail. 15

Fig. 6 shows the variation of the forward scattered intensity as a
function of the angle measured from the 0 =00 direction.. The angular

resolution for this measurement was 0.010. From the graph it is clear
that scattered light is detected in the angular region from -0.05o to
+0.05*. The sharp fall of the detected signal between 0.050 and 0.10

and the loss of the signal beyond 0.1* is not real. In order to get a large
extinction ratio from the crystal, it was necessary to use a large angle of
incidence for the object beam. This reduced the useable aperture of the
crystal, and the light scattered at angles greater than 0.050 did not clear

the crystal aperture. This problem can be avoided by using a 450 cut
BaTiO 3 crystal which can produce a very large coupling efficiencies at
near normal incidence 16 .

0.5

0.4-
4-

0.3-

0-2

0.2
i i

0.1 !1ii1|EII| I 111m3 li 3

0.0 - - I w *

-0.2 -0.1 0.0 0.1 0.2
angle (dog.)

Fig. 6. Forward scattering as a function of angle
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4. CONCLUSION

In conclusion, we have successfully used the photorefractive

technique to isolate the forward scattered light from polystyrene
spheres suspended in water. This novel technique may be used to
measure forward scattering from aerosols as well as isolated particles

such as fibers and spheres. Aerosols are in constant Brownian motion

and they will produce a time dependent phase in the scattered light so

that the transient energy coupling can isolate the scattered light from

the unscattered. For a single sphere or a fiber however, a time
dependent phase should be introduced by applying a small mechanical
vibration to the particle. This approach is still in its infancy and further
investigation is needed to fully exploit it.

5. ACKNOWLEDGMENTS

This material is based in part upon work supported by the Office
of Naval Research under contract N00014-89-J-1466 and by the Texas

Advanced Technology Program under Grant No. 3239.

6. REFERENCES

1. C. F. Bohren and D. R. Huffman. Absorption and scattering of

light by small particles. p69, (Wiley Interscience, New York 1981) .

2. B. W. Bell and W. S. Bickel, "Single fiber scattering matrix",

Appl. Opt., 2& 3874 (1981).

3. P. Chylek, J. T. Kiehl and M. W. Ko. "Narrow resonance

structures in the Mie scattering characteristics", Appl. Opt. 17 3019
(1978).

4. T. J. Petzold. "Volume Scattering Function for Selected Ocean

Waters". Scripps Institute of Oceanography, Ref.72-78 October (1972).

5. R. W, Spinrad, "Measurements of the volume scattering

function near forward angles for suspended oceanic particulates", SPIE

vol3.C, Ocean optics V 18 (1978).

287



6. H. C. Van de Huist, Light Scattering by Small Particles, p30
(Dover NY 1981)

7. Chia-Ren Hu, G. W. Kattawar, M. E. Parkin and P. Herb,
"Symmetry theorems on the forward and Backward Scattering Mueller
Matrices for Light Scattering from a Nonspherical Dielectric Scatterer",
Appi. Opt. 2&, 4159 (1987).

8. A. Deepak and M. A. Box, "Forward Scattering Corrections for
Optical Extinction Measurements in Aerosol Media: 1. Monodispersion",
Appi. Opt. .17, 2900-2908 (1978); Appl. Opt. .LZ, 3169-3176 (1978).

9. J. S. Batchelder and M. A. Taubenbatt, Nlnterferometric
Detection of Forward Scattered Light from Small Particles", Appl. Phys.
Lett., DA 215 (1989).

10. D. Z. Anderson, D. M. Lininger and J. Feinberg, "Optical
tracking novelty filter", Opt. Lett. .11123 (1987).

11. N. S. Kwong, Y. Tamita and A. Yariv, "Optical tracking Filter
using transient energy coupling", J. Opt. Soc. Am. B ji 1788 (1988).

12. R. S. Cudney, R. M. Pierce and J. Feinberg, "Transient
Detection Microscope". Nature =~2 424 (1988)

13. J. Feinberg and R. W. Hellwarth, "Photorefractive effects and
light induced charge migration In BaT1O3", Opt. Lett. A. 519 (1980).

14. J. Feinberg and K. R. McDonald In "Photorefractive Materials
and Their Applications. yo~l.", P. Gunter and J. P. Huignard ed.
(Springer-Verlag 1988)

15. G. G. Padmabandu and E. S. Fry "Measurement of Light
Scattering at 00 by Small particle Suspensions", Submitted to be
published in SPIE proceedings, Ocean Optics X (1990)

16. J. E. Ford, Y. Fainmann and S. H. Lee, "Enhanced
Photorefractive Performance from 450 cut BaTiO 3 ", Appl. Opt. 2& 4808

(1989).

288



RAPID MATRIX INVERSION

D. K. Cohoon

September 14, 1990

1 INTRODUCTION

We consider the problem of solviLng linear equations where the coefficients and unknowns
may be members of Q, R, or C. The dramatic difference between an N 2+1 matrix inversion
method and the traditional method which requires N3 steps to invert an N by N matrix
can be seen by conceiving of a computer that could perform ten billion operations per
second. If one had a model of a man or some other scatterer in a radiation divided into a
million small subunits in which one approximates electric and magnetic fields components
by polynomials of degree two, then roughly 1000 human lifetimes would be required to solve
for these unknowns once the matrix was created using the tr, ditional method, whereas only
one hour would be needed for the method requiring N 2+, steps, if e is sufficiently small.

We describe a.n order N 2+' algorithm for inverting a class of dense matrices. Part of
our algorithm is based on rapid multiplication. The first algorithm which gave an order
smaller than N' for multiplying matrices was due to Strassen ([6]). This algorithm was
based on reducing the problem using 2 by 2 submatrices and the multiplication scheme

a((,,) a(1,2) b(i ) b(1,2)
a(:,,) a(2,2) 1kb(2,I) b(2.2)

(0(1,,1) 0(1,2,) (1.1)

C(2,1) C(2,1)

where
C(1,1) P1 + Pe - A + P7 (1.2)

C(1,2) = ps + pA (1.3)

C(2,1) = P2 + P4 (1.4)

C(3,2) -- P - P2 + P3 + P4 (1.5)

and the functions pi for
jE {1, 2,3,4, 5,6, 7}

are defined by the equations

P1 (a(1,,, -A a(1 ,:))(b(i,j) + b(:,2)) (1.6)
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and
P2 (a(2 ,8 ) + a(2,2))b(l,i) (1.7)

p, - O,,•(bc,., - b(2.•2 ) (1.))

P4 = (-a(,1) + ,( 2.,))(b(I,.) + b(..2)) (1.9)

Ap = (a(,,,) + a(l, 2))b(j,,) (1.10)

p6 =€,a(,,,)(-b(il) - b(2, 1)) (1.11)

P7 = (a(, 2 ) - a(2, 2)) (b(2,•) + b(2, 2)) (1.12)

Here there are 7 multiplications and 18 additions and subtractions. We consider a 2 N by
2 N matrix. For this size of matrix we suppose that A(N) is the number of additions and
that .M(N) is the number of multiplications. Then the number of multiplications is

.M(N + 1) = 7,M(N) (1.13)

and the number of additions is

A(N + 1) = 1 8 (2 N)(2 N) + 7A(N) (1.14)

since there are
4N = (2 N)( 2 N) (1.15)

entries in a 2 N by 2 N matrix. We now make use of the following lemma.

Lemma 1.1 The solution of the difference equation

y,,+i = AIR h ] + Ay,,

that 8atiafiea y1o = 0 is when R is distinct from A given by

(, A R) (\ n - R n)

Solving the difference equation we see that since a general solution is

A(N) = C(7N) - 6 (4 N) (1.16)

since a particular solution is, upon using A = 18 and A = 7 and R - 4 in the Lemma,
given by

P(N) = -6(4N) (1.17)

As a check note that
-- 6(4)( 4N) - 1 8(4 N) + 7 (--6 )( 4 N). (1.18)

Since
A(0) = 0 (1.10)

as no additions are rtquired ior multiplying I 6y I matrices, we see that

C = 6 (1.20)
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We can then see that the total number of operations for multiplying a 2 N by 2N matrix is
estimated by the inequality

A(N) + M(N) < 6.7N + 7N (1.21)

Thus, since the number of rows is
M = 2N (1.22)

we see an exponent a such that

M* = 2aN < 7N+I (1.23)

or applying log2 to both sides of inequality (1.23) we see that the order a is estimated by
the inequality,

N < log92 (7) + N {log 2(7)} (1.24)

or upon dividing all terms of equation (1.24) by N and letting N go to infinity, we see that
asymptotically the order a is estimated by

a < L0g2(7) = 2.807 (1.25)

which means that the number of operations for multiplying two M by M matrices is about
Mf 2 .8 0.

The number of steps required for matrix inversion can in many circumstances be shown
to be quivalent, except for multiplication by a constant independent of the number of rows,
to the number of operations required for matrix multiplication.

Proposition 1.1 If the nonsingular N by N matrix A can be expressed in the form A =

D - P, where D is an invertible diagonal matrix, and if D- 1 P has 4. matrix norm less
than 1, then for every number n of significant digits, there is a number Ms, independent
of the number N of rows in the matrix, such that the entries of the inverse A-, of A can
be determined to at least n significant digits by the sum,

A D-1 [ + (DP) + (D 'P)2 + .(D.'P)MN] (1.26)

which means that the number of operations for computing the inverse is equal to

C(A-1 ) = (M, - 1)CN + {Mr + 1} N2 (1.27)

where CN denotes the number of operations required for matrix multiplcation.

Proof. Observe that since if r is equal to the norm of D-'P that the norm of the
remainder can be made arbitrarily small simply by making Mn large enough, since the
remainder terms involve sums of powers of D-1 P and

11 (D-IP)M" 11:5 r"" < 10-' 11 D-* I (1.28)

that then A-' agrees with A-' to n decimal placed. Since D is diagonal, N 2 operations are
required for the computation of D-1 P. Let us suppose that CN operations are required
for rnarbix multiplication. Then by performing the calculations in succession we see that
exactly CN operations are required for each of the computations (D-IP)2, (D-IP)8 , ... , and
(D-1 P)m giving a total ol (M, - 1)CGN operations. There aie MaN 2 summation operations
followed by N' operations for the multiplication of the sum by D- 1. This argument proves
equation (1.27).
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Proposition 1.2 If A is any endomorphiam of R", then there is a

Ao E C - {o}

such that
2'o = AoI - A (1.29)

is invertible and
AD-= (-To)-' (1.30)

is known. Then there is an open connected set fl containing Ao such that

R, = (AI- To)- 1  (1.31)

exists and
dRA R (1.32)

with

R0 = (-To)-1  (1.33)

giving the initial condition for the Ricatti equation (1.32).

Proof. We use a classical theory of resolvents of operators (e.g. Friedman [3], pp 194-
195). To find a Ao such that the I.. norm of the matrix A-oA is smaller than 1 and use
the result of the previous proposition.

Definition 1.1 We say that a AEC is in the resolvent set of To if

RA = (Al-To)-' (1.34)

exists.

Note that we can consider the component of the complex plane C containing A0 such
that the matrix R.\ defined by equation (1.34) exists. We know that To is invertible, and
that if A is in the resolvent set of To, then

Det(AI - To) # 0 (1.35)

and that the set of all A satisfying equation (1.35) is, since the determinant function Det is
continuous, an open set U containing A0. We simply choose f] to be a convex open subset
of the component of U containing A0. We then write

R. - RA = (W - To)-, - (&I- To)-,

(Wl - To)-, RA(I - To) - (t - To)] (AI - To)-,

(A- A)(AI- ro)-'(UI- 0o)..
= (A - A)R,\Ru (1.36)

Dividing both sides of equation (1.36) by A - 1s and taking the limit as u approaches A we
see that equation (1.32) is valid in 0) since for all choices of A and A in 02 the straight line
joining A and 1i is also contained in fl. This completes the proof of the proposition.

A contour integration method can also be used to calculate the inverse of A. One
method is described by the following theorem.
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Theorem 1.1 If C is a simple closed curve in the complex plane which contains Ao but
does not cross or contain within its interior any of the points A where R,% does not exist,
then A-' = -- R.%dA (1.37)

A variety of identities similar to that of equation (1.36) are found in Cohoon ([1]). We
note that ([1]) if we introduce the operator,

14f(z) = fo ezp(a(z - a))f(s)ds, (1.38)

we can systematically solve ordinary differential equations of the form,

'X X1  ~ 2 ) (d. _ Ar) f (X) 1() (1.39)

where f(z) is any member of COO(R). A solution of the general nonhomogeneous linear
ordinary differential equation (1.39) with constant coefficients is given by

u(z) = [Rn~l R ... Rn]f(x) (1.40)

where the latter iterated integral expression can be reduced to a sum of single integrals by
realizing that the identity

R\ - RO (1.41)

is identical to the expansion by partial fractions relation

XA - X0 (1.42)

A -

where X. and X,, are defined by
1

X\ -- (1.43)x -)

Iterative methods have been suggested by many authors for overcoming computational
complexity in electromagnetic interaction computations and most of these developments
required that the scattering body be diaphanous or have nearly the properties of free
space. However, a way of obtaining discretizations that use lower order matrices and use
manipulations of these matrices to improve the accuracy of the solution have been devel-
oped by Cohoon ([2]); this paper describes a computerizable finite rank integral equation
whose solution is exactly the projection onto the space of approximates of the solution of
the original infinite rank integral equation. These methods of obtaining discretizations of
integral equations that, upon solution, give accurate solutions of scattering problems, cou-
pled with the potentially rapid methods of multiplying and inverting matrices give some
promise of being able to develop realistic electromagnetic radiation dosimetry models as
well as solving much larger matrix modeling problems of all types.
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2 THE MATRIX INVERSION ALGORITHM

We now produce a method of finding the inverse of a general matrix A using these
ideas.

Theorem 2.1 If A ia an automorphism of CN or RN and A is a complex number such that

RA = (AI- TO)- 1

exists, then we can find a connected, convex open set cotaining both Ao and A = 0 such that
if the R\ defined by equation (2.1) exists, then we can obtain A-' by solving the ordinary
differential equation P(.) = dR• dA (2.1)

dA d.s

along a curve
A: [0,11 -. C (2.2)

joining A = 0 to A = Ao where

F(o) = ,o = (-TO) 1  (2.3)

is the initial condition for equation (2.1).

Proof. We just have to pick a curve A = A(s) which does not pass through any points
of the spectrum, where

Det(xI- To) = 0 (2.4)

and since there are only a finite number of these points, we could with the proper choice
of AO find a straight line

A(a) = SAO (2.5)

which has this property. Then the differential equation (2.1) has the form,

Fla) = dRA dA - R2A0  (2.6)

This completes the proof of the theorem.
A variant of the ideas of this theorem can be used to treat a class of infinite matrices

arising in several areas, including electromagnetic scattering theory.

Theorem 2.2 If L is a Fredholm integral operator given by

LE(q) f (p,q)E(q)dv(q) (2.7)

associated with the Fredholm integral equation

E(p) - E'(p) = A(LE)(p) (2.8)
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where Er i. known and we are seeking the function E, and R, ise the reaolvent kernel defined
by

d = JRAvp~w)4 (w,q)d,(w) (2.9)

with the initial condition being,
R0= S(p,q) (2.10)

then the solution of equation (1.8) is given by

E E'+ \,,\B'(2.11)

where
RA(p) E(p) =/ Jj•(p, q)Ek(q)dv(q) (2.12)

Proof: The differential equation (2.9) is derived by expressing the inverse integral
operator as a Born series assuming that X Is small and then analytically continuing the
solution.

3 RAPID MATRIX INVERSION

In the previous sections we have related matrix Inversion speed to matrix multiplica-
tion speed for a class of dense matrices. We shall use the lines for extending the matrix
mult'plication speed improvement for 2 by 2 matrices in our introductory section.

Assume that we have developed a matrix multiplication method for two m by m ma-
trices that uses p multiplications and q additions.-

Theorem 3.1 (Fast Matrix Multiplication) Suppose that A ia a matrix with M = mN

row. and the same number of columns. Suppose that A (N) is the number of addition. and
.M(N) is the number of multiplications required for multiplying two matrices of this size.
Then

M(N + 1) = p.M(N) (3.1)

and
A(N + 1) = q(rn')(mN) + pA (N) (3.2)

and if a is an exponent such that the matrix multiplication requires M1 steps. for multiplying
two M by M matrices, then

a < Log.,(p) (3.3)

which means to get the desired result the number of multiplications required for the matrix
multiplication just has to get down to

p = m3+1 (3.4)
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proof: To derive the difference equations for the number of multiplications and addi-
tions, we simply subdivide two mN+l by mN+l matrices into m submatrices each of which
are rnN by mN matrices. Treating the submatrices as members of an algebra, we see that
the number of additions required to carry out the multiplications is q times the the number
of entries, m2N plus the number of multiplications p of of submatrices times the number
A(N) of additions used in each of these multiplications. The number of multiplications is
simply p times the number M(N) of multiplications required for multiplying two of the
submatrices. These arguments constitute a derivation of the difference equations (3.1) and
(3.2).

We now give the solution of the difference equations (3.1) and (3.2) and an estimate of
A(N) + .M(N). Thinking of particular solutions plus general solutions of the hornogenous
equation associated with equation (3.2), we see that one solution of equation (3.2) is Dm3N

and that substitution into equation (3.2) implies that

Dm2(N+l) - pDm2N = qmn2N (3.5)

which implies that
mN(Dm - pD-q} -= 0, (3.6)

which tells us that
D q (3.7)

Thus, the most general solution of equation (3.2) is

A(N) = CpN + (M2 q ) M2  (3.8)

We can solve for the constant C by considering a matrix with one row and column, the
case N = 0, which would since no additions are required, tell us that

0 A(N) = C+ ( 2 q)p (3.9)

or that
_ q (3.10)
p - in2

As a check on this work, we also consider the situation where the number of rows is M - m*
which means that N = 1. We know that in this case

q = A(l)=Cp+(MI9 )M2 (3.11)

which implies that

=C [q q _m 2] (3.12)

which after some manipulation is seen to be ilentical to that given by equation (3.10).
The number of multiplications is easily seen to be

M (N) = pN (3.13)
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We now estimate the total number of operations required to carry out the matrix

multiplication. Observe that

A(N) + X(N) = - N - mNi + pN (3.14)

From equation (3.14) we see that

(N+ ()[ 11 m + l]pN (3.15)A(N) + X(N) < q -- Im-

Observe that if M = mN is the riumber of rows and if the number of operations for matrix
multiplication is MO, then equation (3.15) implies that

Ma = maN < p-rq + 11PN (3.16)

Taking the logarithm to the base m of both sides of equation (3.16) we deduce that

aNLog,.(m) < Log. I+ ---+ + NLogm.(p) (3.17)1 P-

Dividing all terms of equation (3.17) by N and taking the limit as N approaches infinity
we see that asymptotically we need

a < Log. (p) (3.18)

If we could carry out the operations with p = m 2+4, then we would have

me = M 2 +c (3.19)

as an estimate of the number of operations required to multiply two M by M matrices.
The number of additions used in the multiplication of the submatrices apparently makes
no difference the the asymptotic computational complexity of the matrix multiplication of
the large matrices. Our discussion in the previous section then gives us a class of dense
matrices that can also be inverted in this number of operations.
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TO SPATIALLY AND TEMPORALLY

COMPLEX WAVES
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We consider the problem of determining the response of a class of N layer electromag-

netically bianisotropic spheres to a possibly transient and spatially heterogeneous radiation

source(Barton [8], Chevaillier [19] [18], Chylek [20] Schaub [42], Tsai [46], Yeh [56]) when

these spheres are placed in an ambient medium with material properties such that if fl is

an open set in the ambient medium and

fo div(E x Hi*)dv = 0,

then E and H are both zero in f]

In this paper we describe the exact solution to the problem of describing the interac-

tion of elec-romagnetic radiation with an N layer structure whose regions of continuity of
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tensorial electromagnetic properties are separated by concentric spheres. We assume that

each of the layers are bianisotropic.

Bianisotropic materials have used (Ferencz [25], Gamo [26], Hebenstreit [29], Shiozawa,

[44] and Yeh [55]) in modeling a medium moving through an electromagnetic field. We

consider also the possibility of an electromagnetic field whose spatial distribution would

suggest a complex source that would include an off center laser beam interaction with a

droplet or a radar beam sweeping across a stationary structure. By considering a layered

spherically symmetric structure whose core may be metallic and with outer layers having

complex material properties or containing sources of radiation, we may be able to predict

the level of the hazard experienced by an individual with a metalic bone replacement or

clamp who is placed in such a field.

The source of internal power density distribution for a bianisotropic structure exposed

to external sources is distinct from anisotropic materials, since terms involving the product

of the electric vector E and the magnetic vector H appear in the internal power density

distribution. Using the concepts contained in this paper, a solution of an energy equation

with a tensor conductivity can be obtained by an exact formula when the electromagnetic

properties do not change during the exposure process. Using the derived energy density

distribution as a source term, a more general nonlinear heat equation, taking into account

radiative conductivity concepts can be derived. Several authors (Barton [8], Chylek [22],

Schaub 142]) simply assume that the power density depends on the square of the length

of the electric vector times the conductivity. In a bianisotropic material, however, thsre is

a power density contribution from the coupling of the electric and magnetic vectors (see

equation (4.6).
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1 A Mie Like Solution for Bianisotropic Sphere Scat-

tering

Although it is possible to develop an integral equation formulation of the problem

of describing the scattering of electromagnetic radiation by a bounded three dimensional

body (Jones [33], pp 528-529), the only bounded body for which a truly exact solution has

been obtained to the problem for describing its response to electromagnetic radiation have

been those with spherical symmetry. It is possible to give a representation (Jones (33], pp

490 to 495) of the fundamental Green's tensor F satisfying

curl(curl(r)) - k2F = 76 (1.1)

in terms of vector spherical harmonics and to use these to develop a concise derivation of

the solution of the problem of describing scattering by a sphere (Jones [331 pp 496-526).

Some earlier work on anisotropic sphere scattering ([28] [321), [48], [52]) have extended the

classical result of Mie ([34] 1908) which is believed to have been first obtained by Clebsch

([23] 1863). We describe, here, an exact Mie like solution that is applicable to a class of

bianisotropic spheres.
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1.1 Problem Definition

We assume that ? and 7 are tensors defining the permeability and permittivity that

are functions of the spatial variables and the frequency w of the radiation. Here Maxwell's

equations have the form

curl(E) = -iwI - W (1.2)

and

curl (17) = iw7.g + 89+ 7.9 (1.3)

In the ambient medium we assume that the tensors 3 and 7 are the zero tensor 3. In this

paper the energy balance is described which enables us to validate a computer code for

describing the interaction of radiation with an N layer bianisotropic sphere where the layers

may be separated by impedance sheets. The inner core may be penetrable or perfectly

conducting.

1.2 Spherical Harmonics and Orthogonality Relations

The basic idea of the code is that the induced and scattered electric and magnetic

vectors can be expressed in terms of

[.Pn(cosCO)) d
Am P')c[sC8))f(9 exp(imb), (1.4)- Fdm ,, _. + r(co8(O)).. I

B(m,tt)= [±PYn(c•o(O))e, + * .. ) Co e ,p(4,). (1.5)

and

,(,,,, = P,"(coa(O))exp(im4')4, (1.6)

where 4-p, C-0, and e-0 are the unit vectors perpendicular, respectively, to the r 0- , 0 = 0,

and 0 = 0, coordinate planes, and where P,(cos(O)) is the ordinary Legendre function

defined by Rodrigues's formula

S(Z) n _ )n (1.7)
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The associated Legendre functions P,, are given by

•d/2 (d P.(z) (1.8)
Pm!(z) = -Z')'/ (d\

It is obvious that even without integrating over a sphere that the dot product of either

of A(.,,,) or B(m,n) with L.(m.n) is zero. The orthogonality of the functions ezp(imo) and

exp(AO) on the unit circle for m 9 in show that if as in ([11]) we define the inner product

of two vector valued functions Ui(0, 0) and U"(0, •) defined on the unit sphere by,

< 01 V> = f2 jt U(0, V (0, 0)'"ain(0)d d.6 (1.9)

with two different values of m are orthogonal. If we take the dot product of two distinct

members of the collection

$ = A(m,n),B(m,n),C(m,n) : mEZ, and nE {I m m MA,". }t (1.10)

with the same values of m and make use of ([2], p 333) the negative index relationship
r (v-i + 1) [Ppv•z

P; )(=) r(z = -+ 1) [ 2 exp(-ionr)sin(,u7r)Q;(z)l (1.11)
r(v A + 1)1 7rV

we find that any two members with different values of n are orthogonal with respect to

the inner product defined by equation (??). For example, to see that

< A(mn),B (m,,) > = 0 (1.12)

for all n and r we note that this dot product reduces to

im(2?r) f [Pn(cos(0))P,(co8(0))] dO = im(2?r) f (x) {pm(x)P,(z)) dz (1.13)

The details of the remaining orthogonality relations are found in ([11]) or can be derived

from properties of the Legendre functions described in Jones ([33]).

Plane waves in free space can be represented using the functions described above by

carrying out the expansion(Bell, [10] page 51 and Jones [331, page 490, equation 94)

eXp(.-ikorcos(O)) = E a,,P,(cos(O))jn(kor) (1.14)
tt=0

where the expansion coefficients a, are given by (see Jones 133], page 490)

a. = (-i)n(2n + 1). (1.15)
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These coefficients are determined by letting z = kor, carrying out a Taylor series expansion

in z, and making use of the orthogonality relationships

/0 { 2/(2n + 1) fn--m

f, Pn(cos(e))Pm (cos(e)sin(6)d8 = (1.16)110 if n 6m

This equation is based on the relation (Bell [10], page 61)
/1 1 2 2÷Il(nl)2(z2 - 1)ndz = f -(z - 1)n(z + 1)ndz = ) . (-I)n (1.17)

which follows from integration by parts in the left side of equation (1.16). This relationship

can be proven using the Rodrigues definition (equation 1.7). By using the notion that the

algebraic structure formed by linearly combining these vector fields in a ring of radial

functions is invariant under the curl operation also enables one to get an exact solution to

the scattering problem for bianisotropic spheres.

1.3 Radial Functions and Field Representations

We assume that if V is a vector, then

CU~T(V) = r-i1(e) (8iN(O)V,) -8 +

1 [W) 1- (+,.
r Lain(O) 410~ ar(r)4+

-r 17r (~o) 2wv] eo(1.18)

We then find that if we define vector fields A, B, C by the rules

A F(r)A(mn) (1.19)

S= F(r)B(mn,) (1.20)

C F(r)C(m,,) (1.21)

that then

curl(X) = n(n + 1)-r)Cdm,) +
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r 5r-(rF(r))B(mn) (O,) (1.22)

curl(C-) r A(-,n) (1.23)
7

and

curcl() __ _ (rF(r)A((n) (1.24)

We assume that there are three radial functions that are used in representing the induced

fields. The induced electric vector has the form,

E = {am,) Zn~a)(r)A(mn,)(0,O) +
(m,n)el

C(mn,n) S44) (r) 6d1m,n) (0, 4') +

N(•'nl )-(-- (r Zn~b) (r)) (,n)(0, • (1.25)

We now begin to develop the consequences of Maxwell's equations by noting that

curl(E) is given by

CurI(f)

f•a,,) n(n + 1)Zr lr )rZ r + 10
(m,nl•Y Ir

(-,-) () A b(mn) (rZn )2r))At,- -

(mn) (mn) +

c a r -- n' Lm~n~e {G(men)Zn )()(m,n) + IC(in,n) kr (m,n) +
b(m,,n) (r (a---r)(rZn(b)(r))) 9(m"n) i-/7/• (1.26)

In a class of special cases the scattering of radiation by a bianisotropic N layer spherical

structure has a particularly simple solution. Solving equation (1.26) for A=H, we see that in

general if we simply assume that W is a diagonal tensor whose action on a vector represented

in spherical coordinates is defined by,

0 F9 0 E (1.27)

0 0 5 EO
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that then making use of equation (1.27)

-iw/t =

wij [thnmhavelheffor

(m ~ ~nn)E 1

+ [a(m~n)'-ý (rZn~')(r)) - cab(m,n) ( I) ( ") (rZirb)(r))] A(m,n) +

b(mn) 
(1.28

[Cmn)kr) r 1 r~ (rZnb)(,r)) + I.&I&m,nJ)4v (mr ) j (.8

1( 11),

While coupled systems of equations can be obtained for the radial functions for more gen-

eral tensors, we assume that the bianisotropy coupling tensors 3 and 7 and the permeability

tensors are all diagonal, having a form similar to equation (1.2e'),

With these assumptions, we see that for a bianisotropic inaterial, the magnetic vector

will then have the form

n Zn(G)(r)n(n + 1) +)C(,n)

(mbn)EI 49)(~~)()

+ a(mn~n)l(9 (Zn~)(r) - bn)~ ~ y) rZ( JBm'n) +

""A rr9 kr O

b(mn) ( o () (rZn'br)) + aa(m,,)Zt(,G)(r) A(m,.-,) (1.29)

Applying the curt operation to both sides of equation 1.29 we obtain an expanded form

of the final Maxwell equation given by,

m Zna) Z,)r ,G(r) n(n + 1)+ rmn) JAm)+

curl~fl) b(m,n)~- (rZ ()) } At(m~n) + r AInn

(r 1) {C(mn) z ( a)()+

WA r kr2

bmn)Tr j r2  (rZn~b) Cr)) + cia(m~n) Zn~a(r) } C(m~n) +
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wA~ r ýr \T.Cm)kr2  +

b~mn~h ( r) Z(Zb)() + JmnZ~7} (m~n)

(iWC + a)E + OH (1.30)

To make use of the second Maxwell equation(1.30) we need to develop an expression

for (ic + + + nil. We find that

(iwz + F)f + =

m,, i {[ + a)a(mn)Zna) (r) + 2 { n(c),(r) +

kr2 r

kr (rZ(b}Cr)) + a(mn)Zn(a(r) A(,,)(e,4) +

L a.. } r I Ir)()) +b(rn,.)(k-(rZ 1)
[(.~ +or) (r Z~) ()

+ [CiWCr + a"r)C(mCn) kr +

i01{ Z4!' ())(r)n( + 1) C(mn,)Zn(C)(r) }] d(,v,)(O, t)

W• I a(,) r + kr(1.31)

The solution of the electromagnetic interaction problem is then obtained by relating

coefficients on both sides of equation (1.30) and making use of orthogonality relations to

get differential equations for the, a priori unknown, radial functions.

Equation (1.30) coupled with equation (1.31) is the key to the development of a system

of ordinary differential equations satisfied by the radial functions. Using orthogonality

properties of the vector functions A(•,n) and B(,,n) we see that we may equate their

coefficients on both sides of equation (1.30). Equating coefficients of A(m,,,) on both sides

of equation (1.30) we find that

I~i\1 1" Z,~)(r)n(n + 1) z (0 (r) '
a(m,n) + arc(m,n) +
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9a)b( rI~ a (,,,,) 1rZ(Z.(a)()))

S + +, iDf C(m))

(iw• + a,) ,. . ( + ((r) +

T r,)( ~ Za (1.32)
kr r (Or "•j(")) + c'a(.,,)z"() (.(2)

We can see the consistency of this equation with the equations obtained for the special

case of anisotropic spherical structures. If in equation (1.32) we set T and ý equal to the

zero tensor, we obtain

[(i ) aI I I

(rIa 1 (r (+ (1.33)

7G() }]r -r [(wý+,(7rn

or upon multiplying both sides of equation (1.33) by -iw,. we find that if we let

k2 "- W2 t14 - iw~A (1.34)

that then Zn() satisfies,

)( + 1) _ k2Z(a)(r) ! ( (rZ,)2 ())

which is exactly the equation satisfied by the radial function Zn(a) for an anisotropic sphere.

We can also, in a similar fashion, relate coefficients of B(mn) on both sides of equation

(1.30) to obtain the relationship.

(- r~ fC(m~n)kr +
w-A} r Tr kt2

b(mn)g (a) (r z,(r)) +
+k br-+ mn) ~)Z

[(iWC C), ( r) (r Znb) (r)) +

10a(m) (rZ,(,a)(r)) + ccb(rn,n) (a (rZ(b)r))) }]](1.36)
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If in equation (1.36) we equate the differentiated terms, then this equation is implied

by the simpler relation,

-- C(,n) kr2

, l (" s.. ) +
b(7&n) IJ 2ý (r Z.() (r)) + aa(mn,n)Z.(a(r)

[(iwe + o) ý(Z.')( r)) +

Equating coefficients of C(.,n) on both sides of equation (1.30) reveals that

(i) n 1 C( ), ) +

{(,,n) 1 ( a)(rZ~b)n(r)) + a(,n) Zn(a) (r)

+ [(iW~r + Crr)C(m,n) zk r) +

i~r(a) (n + 1) Cii)Zn"WIr+ 1 C(mn)Z (r (r (1.38)

WT or 
r1. 37

To compare equation (1.37) and equation (1.38) we multiply both sides of equation

(1.37) by r/(n(n + 1)) and we find that

S) (r ) + b(,,,n) ( ) ( ) (rZn()(r)) + cea(,,,)Zn(r) }

~n(n +l) k +

O3r---a(mn)Z{W,(r) + kn + I)) •(mn) Zn'))

We have consistency between equation (1.39) and equation (1.37) provided that

(iwe + o)(-b(mn)Zn')(,)) +

( kamnZ~a) (7) - (Tc) =3
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iwE, + 0
y )

( +nfl o,)) C( ,.) +

i137 k ' '' " Z, -t- n) + .. I) c(.,.)Z.")(r) (1.40)

We note that the consistency relation given by equation (1.40) specializes for the case

of the ordinary anisotropic sphere, where the coupling tensors W and ý, are both equal to

the zero tensor by

(iwC + O) (-,b(,,.,n))Zn() (r) i= i, + Or. C(m"nlZn') (1.41)

We note that equation (1.41) is satisfied if

Zn( Zb)(r) (1.42)

and
C(mn) + 1 iWE + a b"b(mn) (1.43)

(iWEr + 9~r)

We, however, now collect the terms multiplying the coefficients a(m,n), b(m,n), and C(m,n)

in equation (1.32) we have

[ (.1) i(a)(r) !(-+1 - (iW, + a) Z (a) (r)

i.8 ,,,u •I (rZn(°a(") a(m,°) +

W - :4;-4] {r Tr) (rZn(b)(r))} b(m,n) +
[ ia i/I 1 ]c)"icir - L Z.(o)(r) C(mn,) = 0 (1.44)

Collecting the coefficients of a(,m,n), b(m,n), and C(m,n) in equation (1.37) we have

aZna) (r) - IZ,(a) (r)" a(",,,)

+ [± 'r (rZn()(r)) + 0 k Zn+) (r)

+ ýL "' ' b(1,,) + ),n) = 0 (145)
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Equation (1.45) yields the relationship

[bi•bk (m.n) + k 2 (Z(•)(r)] -(•.

r i 13 1

b~~Z~G) -rj-

iA 1

- kjZ,4) (r)C(mn) (1.4-)

Equation (1.38) yields the relationship

n(n+ 1) b(m*n) i' 1 a 2 (rZ .()(r)

- ~ A Tws r-n +Tr LZc_ -,Cr)(,) ++ 1

+i,•, + o, Z.+') (r) }Ccm..) +
+ kr

a(m,.) (z + 1) ( (r) +,6r Z.(a) (r) r (1.47)

Multiplying all terms of equation (1.47) by r/(n(n + 1)) we find that

b{m) b -WAhr (r (rZZb) (r)) =

Z.S1 (")(, (r) n ~-w~ krI '' + • ,,/kn(,l+ 1),

+ kWnr + ar Z(C)(r C(mn) +knn+1)

{ --oZna) (r) + Zn~a)r) I aj'mrj (1.48)

Solving for the term
' 1 /8\2

U - kr -r (rZn(b)(r))b('n) (1.49)

in equations (1.48) and (1.46) we find that

a i [LZn~a)(r) - L ZG)(r)] a(m3n)
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- [c Z() + ,4 ._zC (r)] be.m,)
k w~k NM

-q""n) (krw-2,) ZWj)(r)=

(r) --

"wi kr• kn(n + 1) "'

n' 1)) Z(c° (r)] c(m'n) (1.rO)- kc,•,An(r + 1 ("

Equation (1.50) implies, after subtracting identical terms From both sides of the equation,

that [~ e + a,+, fPrar
kIn(n + 1) kwjArn(n + 1) 1 ( €

( i'i- r ) ZW,(r)a(mn) +

C + iWE + ] Z,(r)b(,n)(1.51)k + •k I rb(•.

Solving equation (1.40) for C(M,)ZS4')(r) we find that

i~n + 0 +Cm,' r 1)Cnm')Z,(.)(r) =

ifo

{iiwf + or) - j b(m~n) Zfb) (r) +

,A W- a(m,nz4)(r) (1.52)

For a simple chiral sphere where
-- X • (1.53)

equation (1.52) has the form
cc•,n)Zn(°)r) = -n~n + 1) iWC + Cr + iI3Ci)(wis) ] b(m n)Znb)(r) (1.54)

C~m~n),~)(r ((jW'Er + Crr) + (ia4,gr)/ (W~s,) )

If we assume that equation (1.52) is satisfied, and equa (1.53) is valid so that

equation (1.54) is valid and, furthermore, that

=-(1.55)

WA WAL
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then equation (1.37) will be of the form

S-,(r + 1) ' w e + 0 + i-6a/(w ) \1] Z(,4 )(r)
+ 1 C(iW E. + a,O) + (i )(rO,) / )J b("Wm) kr2

(-) b(,,n) (i () (rZn(")(r)) =

a + iWC b(,,,n)(-Zn()(r)) "sea n)n((r____ - -• b..z€(r) (1.56)

If we also impose the condition
ia, = - (.57)

then equation (1.32) takes on the form

S(,za)(()(in r21 2 ) ZWAr + (r ( (rZn~a)(r)) -

(i'w + C) ZK) 0r) + ýfz-o (1.58)

Multiplying all terms of equation (1.58) by iwA and defining

k = W2 - iWla (1.59)

we see that Izn~n + 1).z,(-) + (a) (r))

- k2Z,¢a)(r) - a#3.zC)(r) (1.60)

or if we introduce the variable

-=(1.61)
Ar

the ordinary differential equation (1.60) satisfied by Zna) is

1 - 2 (1Z(")Cr)) + [(k2 + afi) -, 1)] Z,(a)(r) - 0 (1.62)

The spherical Bessel function is defined as

4'(z) = v/•J,+1/2(z)T Z V/2 (1.63)
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where *.•() satisfies

1 (±)' (z (z)) + [ + 1)] + .(z) 0 (1.64)
z asz Z2

Dividing all terms of equation (1.60) by

k2 + a4- w2 ta + Pac - iw;&a (1.65)

we have with the definition

S(= (k'+ Pa)r' (1.66)

the fact that equation (1.62) implies

,(oI, n[ .,+ 1)1
() (z*,,(z)) + [2 J "0  (1.67)

where

z(z + 1) = on(n + 1) (1.68)

We can find a simple formula for the index v of the form

-1 + VfI+ 4 'n(n+ 1) (1.69)

2

Equation (1.56) gives the second equation which implies that

{ I-} [-n~n + 1) iwe + or + ii~a/(wus) nb
w~s r2 or) + ia'r) (WA' ) (

(*)A (- Tr)2) (rZ,(b) (r))=
(-Z(1 (r)) - •.EZn~b)(r) (1.70)

Multiplying all terms of equation (1.70) by -iwIskr2 and using equation (1.59) we deduce

from equation (1.70) that

(1 (C)2) (rZ.b)(r)) + (k2 + a#)Znb)(7) -

[ n(n + 1 ( WE + Cr ii~cl(WjI) )]Z()( 0(.1
=(i7 + Cr,) + (iai3g)/(wlu,) b(()(r)-
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Letting C6 be defined by

b iW o + (i+flra/(WAr) ) (1.72)

Substituting equation (1.72) into equation (1.54) we deduce that

C(m~n)Z(') = -n(n + 1)CZn(,Z)b(m,n) (1.73)

The equation (1.72) is substituted into equation (1.71) to yield the equation,

+ [(k2 + a#(8) n(n + 1)& Zb) (r) -0 (1.74)

Combinations of solutions of equations (1.62) and (1.74) and their derivatives are used

to represent the electric and magnetic fields induced inside an N layered sphere where

each layer has nontrivial magnetic properties and the electric and magnetic properties are

coupled in the sense that the layers are bianisotropic.

2 Expansion Coefficient Relations

Substituting equation (1.54) into (1.25) and making use of the relation defined by

equation (1.72 ) we see that

E (E,,ja(,mzn)z(.a)(r)A(m,,)(e, 4) +
(m•,n)El

[-n((n + 1){•Cblj (,n,) z-- (m,)(or ) +

b(m~n ( I' la -rZ r) 21

Now making use of a form of the relation (1.74) given by

(1 ( 3) ) ()
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+ nn+ (k' + ci3] fl () (2.2)r2 Z( r

we see that

curt(~ mnE[ in n +
(mn) [n(n + 1) Z Cmn) + 11.(r ). ) +

(-n(n + 1b) b(mn,) /,.)(rm) +

Substituting equation (2.2) into equation (2.3) we see that

eurL(R) =

{a(m)n) [ ) (+ (rZ)(r)) mmn)]+
r 5 b~) +( F 

B

(-n(n + 1)Cb)b(m¢n) kr 2 A

b(mn) k [n(n +)1 (k2 + a#)] Zn()(r)X(m,n) } (2.4)€,,.)r r2 I•

Some telescoping in the right side of equation (2.4) yields the reduced form,

cur(i) =
) [na + "(r),- 1+ ((a)

C2m++ t ()Z(r) ,-+

)b(mn)! [(k A(mn)

= iww - 7 ,E(2.5)

Defining a new function Wn(a) by the rule

w,€a)(r) = T (r) ( Za)(r)) (2.6)

or equivalently by

S-)LIM r(zj¢()Cz)) (2.7)

Z --+ kr\ZG8
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where W•) is defined by (1.67) and where C, is related to the parameter P in equation (2.7)

by equation (1.61). We define W.)(r) by changing a to b in equation (2.7).

Using the new function W,() defined by equation (2.7) we define

,b(mn) [(kr + c4f)] Zn()(r)!(mn)

= iWAH -,OE (2.8)

In terms of the function Wh(')(r) we express the function il by the rule,

),J {Ga(m.,n) [n(n + l) Z C?() (m,a) + a(mI.nkW(IG)(r) mmn)] +

-b(mn,n)!- [(k' + a,6B)] Zlb) (r)AX(n,n)}I +

13[-~n+ ) ~b1(m,n,)PZn()(r)X~~)8O +(((n)(l rOr-~ 1) •(01,-) kr d(m&,n)(O,• +

, •2 (- ( ") (rZn•b)(r))) B-(.,, (0, ,)}(2.9)

Collecting terms we find that equation (1.54) which relates the function C(m,n)Zn(a) to

the function Zn(6) can be used to derive the relationship,

[a(m,,n)n(n + 1) r + ar C(m'") kr JC(M'n)

+ [a(m~n)' " (rZ.(,a)(r)) - ab(m,n) ()()(rZtnb)(r))] B-(m~n)+

Zb)ra 1 [8\ + (h2
[C(m,n) ,+ b(mn) (rZnb)(r)) + aa(.,,,n)(r) A(mn) (2.10)
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Let us develop the full theory using the functions,

W.(G(r.),= -1- ( ") .(oZ~j)
"'np) k" r Tr .(n,p,) (r) (2.11)

where Z("" )(r) is the singular solution if j = 3 and the solution with the integrable singu-

laxity at r = 0 corresponds to j = 1.

The expansion coefficients in layer p associated with the functions, Z(*?(r) and w(,p()

with the integrable singularity will be denoted by a((,n' and b(P)," and the coefficients and
a(P) Z n ()•(°,3)/- L(a,3)

a .andP) of the functions Z•:.,(r) and .(, (r) which are singular at r = 0. The

electric vector with general representation given by equation (1.25) is in the pth layer of

the multilayer bianisotropic sphere represented by

-n ' f r z(a,,I , P) (r,3) +

[-n(n + 1) { Sb}]b~,) I~' ()C(m,n) (0, s ) +

(min) kL

[-n(n + 1)f ý ±b)]# 1) Z(n, ) (, ) -

~ (r)

S( mn) {C kr W(m, ()8 0),+

-b(),,,,. .. (b,) (r) - P(,P,) Ur(b,S)(r)IJ•(m,n,)o,) (2.12)

Using our previous expression for the magnetic field vector but using the definitions (2.11)

and the fact that kp is the propagation constant in the/¢th layer, we see that

(Kn)EI

-- (,..) + .c( .) - C(m.n)
w r kr I

i ..,(n.p) (r)

A Ir 2  +
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(~m) -) (-)2(rZ((n (f )Zn'1(r)) + aa(P, (a) (""rj A(..j (2.13)

Now using equation (1.74) and equation (1,43) we see equation (2.13), and making use the

telescoping of terms or specifically the relation that is derivable from equations (1.43) and

(1.74) and given by

CýP- kP r 2 +

P-,) (b.1 v - )(I.) =

b (k' + a.),(b.1 .b mn ~ (2.14)

we see that the magnetic vector in the core of the multilayer spherical structure corre-

sponding to p = 1 is given by
-=

- [ .(,) 1,:'(r)n(n + 1) H,
L,) • a(m €" r - c.bavzn(n + 1)b(,.) kr Z-iT (M.() r. t• o;). -p,ts)

(Mw,n)E1 W.Ur

+{- G(Mn€) k,-,W,),- + -. (-W• (r))} B€m.-) +

r(.) (k2 + a#3) 1("(r)+ a(P)a( A( ,n) (2.15)

We now consider the representation of the magnetic vector in an interior layer of a

multilayer sphere that does not contain the center of the sphere. The magnetic vector

has the representation in terms of functions Z((:.1(r) which have integrable singularites

and the functions . whose representation, in the case considered here involves Hankel

functions with complex index. The magnetic vector representation in a penetrable shell Is

given by r-1 •_ (-i--, Ia(.) Z(?•(r)n(n+ 1) +

(m,n)E wJ (n rO, n,. ), C: (,l .

~ (a.) n(,•)(n +I 1)lP•b(
_(,,_,_)_r + (-1) "b-n + 1)Ojý ,) 7 +

39kr
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acP)on(n + 1),3(P) Z(,*P (r) -. ~n
r ,) 

C,.

Sa('),) kpwrUr(0-1 (rj + a (r)( +
{ (mn) on (..() ((,)}BI.Pn +

(W ) - { )a(P)b(P) (W ("))r+ a((b1 ().(W.()'r,)} ( •)(m,,)+
((,n) ) (mp)-n-P)QJ ((m,n) (W,( )} An

(m n) Z'(-', p)C,) W + 0 ('M.), n)"€-,n) 3)l A(',)+

(W,. " ){ (,)-",p)Z ( + 1()a,3)z.,,(r)} ,(m.t,n) (2.16)

We now consider the representation of the electric vector in the core region p = 1 of the

multilayer, spherically symmetric bianisotropic structure. Making use of equation (1.74)

we deduce from equation (1.25) that

S= {�am�€,,,,lZ.a) (r)" -,,)(0,4)) +

(,,m.,n)e ,n" !(

[-n(n + 1) {sýb}b(m,n),. r C.,)(6, ,) +

kr T mr)0~k

Equating tangential components of E across the shell r = R. equation (2.12), the

representation of the electric vector in a shell region, implies that equating coefficients of

A(m,n) (0, 4) leads to [.a(P) Z(aj)'r=+ CI(P) z(a,s)r)

(,n) (,). + (mn) z.(, (r)J
( [(p+a.l)•. (r) +a(P+•1) z (0 ) (2.18)

Multiplying both sides of equation (2.12) by B(m,n) and integrating over the sphere, we

deduce that

b(P,) Z(b , ) (r) + P'•. "n• '[() (,). (P) Z(b,S)• i

_ [b )r,) ,Z ) (r) +• (P+i + (b.3) (r)] (2.19)
- (.m,n) (n,p+l)v +'(m,n) "(n,p+l)rl

We now set up the differential equations which state that the tangential components

of the magnetic vector are continuous across the boundary of a sphere separating regions
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of continuity of tensorial electric properties. Equation (2.16) implies, upon equating tan-

gential components fl, on each side of the boundary r = Rp, that

' f.ie) , W(,(rl), ) +(P) wGW ) (.r1.

w (nP) (p•, ( ) (r ) + *(inn) (n,p)

AW (Ln(W((nhl) ~ P

i 4(P1) { p+ lW[ (G,1) (r) + . C,( )k,+IW (na.) (

( ,'•+l) { a(P+1)b(P+1)(W()'1) (r))"t(P+1) )j3 '?(W(:l 1b:) (r)) (2.20)

Using equation (2.16) and equating coefficients of the vector A on both sides of the

sphereical shell r - R1 we have

(Wf P [ (k~ +-o(P)/i(P))] bIP) Z(bh) ) #(p) Z (b.3) (r)

j (n •'(m,n))(n,p)

( i ) .(P)a((P) ,n) ((n,'p),,) ,a(P)a(m'n np) . ( r,),_

((+ (-P) ) I[ + ,+-)# ( ,]•)] z(b1)

+,8(+,[ (kp. 1 + k, + ]'+)('+)) zl.(b,3),}
( m,n) -kp+1 (n,+) (p

(wis(+1)J {o(P+1)a(P) Z(a,1) (M + a(P+)a(p+l)Z(a,S)(r) (2.21)W/( )(m.n,) (n,p+l) ( +(m,n) (n,p+l) ()](.1

We now attempt to develop transition matrices which will relate expansion coefficients

in one layer to expansion coefficients in another layer. We start with equation (2.20);

we find, after multiplying both sides of this equation by i(P) and dividing both sides of

equation (2.20) by k,, that

"a,(l) W(fl,) (r) + -c,,• ,(p ) W () 1+

f •~p [ ,f(b,1) = W(b3~~ (-- M )b~ (W(p)( r)( - )n,n)' (n,p) (r) )} +

(p+ a1P+1)W(G,() p+)W(a,3) (, )
ji(P+ 1)kP) I ,(r,,n) (n,; +•(r)+ '(mn) (n,p+,) } +
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-/(ea(P ) {�b,�+1� (r) ) r. (+ ((,,. 1) r)) (2.22)

Multiplying both sides of equation (2.16) by X(m,.) (9, ) and observing that

LIM f. X(-,)d(0,) =

r-+ R.- ý8 (

LIM f H. A(.,.)(8, 0)dA (2.23)
r - R+ S,(r)

we derive equation (2.21). From this, after multiplying all terms by -iwJp(')k, and dividing

all terms by (kA + a(P)P(P)), we derive the relation that

(k + a(,)pF()) a) ) (n,() (m,n) (n,P)(r) +

({ + ),)) (I) "?.) + P,( )"c } ,=
(,n) n(p) (+(m,,) a(nPp) ZS)

( / a(P)G(') la(,m (nl.l),. (m,n) (n,p+)
( 14 ,P -,)(kp + a €,)P c,) n", ,) € ,,+) , - +I,, . -'( ,, , • +

- (P)A+)knp)(k,' + (P1)P(P+l))1 J '( ,p+ ,+')zg ,1 ) (r) + P )(P, I) 9.0 ,)(r))" (2.24)
[ /t'***)k~21 + a&')j#(i')j (m,n) (n,p+1)(~) j(p'

We now define parameters which appear in the matrix relating expansion coefficients

in one layer to those in an adjacent layer. We obtain these by considering terms appearing

in equation (2.24)

(p•+i) _ ')k, _[ _ (__++ +)__(P+_))]

(P+,) - P+kp ) k+ + a (2.25)

Also

=+) / (p+1) (2.26)P~a,3) A~p+l)k +a(PQ8(P)

A similar term appearing in the inner shell matrix is

(P) kpa(P)
=(,,) = (k + a(p)'(;) (2.27)

A term in the second row of the outer shell matrix is

€',•) p.(Pok+l~k,
P(p3) = (2 (2.28)
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Another term appearing in second row of the matrix is

P(p+1) (__(p__ (P+_ )
(b,2) 1,4(P+I)k-) (2.29)

The corresponding term in the inner shell matrix is

'(i) ____(P

k(,2) • (k ) (2.30)

With the special functions Z('j) and .(6') and the derivative terms defined by equation"(n,p) "(np)

(2.11) being evaluated at the separating spherical boundary r = RP., we see that the matrix

equation relating expansion coefficients in layer p to those in layer p + 1 is given by
Z((o,)o Z• 3(,) a(P)
Z,,Pl (Rp) , .(,,') (Rp) 0 0 a(,,)
WV((",)I, u(as)I, .(P) w(b,1)(R p (p) W(b s),. (P,).

""n,p) (RP) (j,p) P?(b,2) ((R) P (b,2) (.,p,,) *(,n)
P (P) Z€,,,a _€ () ZCo,3),o z! )(6 1 ) (bs3) • be,).

K3) (n;?) () P(,,)'a (n,p) R'P nC (p) PR(P),p) ,)(RP) ,n)
W (b 1) (b3) •,()

o (Rn) W.(() ) (R+ )

Z(.,+) Z.(,•) 0 0 (,+,)

ar(i,() pi)(aS) (p+i)W(b,i) (p+I) q(b,3) 6 (p-I-1)
(nKp+1) "'(n,P,+1) P(b,2) (n,p+l) P(b,2) (n,p+l) (.,n) (2.31)p(p'' I) z7.(% ) ,.(p'l 1) Z. (a,3) ^(p-l-)Z(b,1) ,(p'I) Z(b,3) b(P-I-)

(d,,s) -(n.,+ 1) '(a,3) "(n,P4-) P'(b,S) (n,p+l) P'(b,3) (n,p+l) (tn,.)

0 0 VW(bp, 1) Wr bi) #rnI(p 1) (n,p+l) (tm,-)

This equation can be written more compactly in the form
(p+i)

a(m.n)

^(P) aa(P+ 1)
T((m)(Rp) c'("") (Rp) (m'n) (2.32)b(P) b(p+')

(m,n)
p(J) i(P+l)(m,n) (m,n)

Wronskian relations will show that we can define a new matrix Q(P) by the rule

)-T(P)( - P+I)(RP). (2.33)

Using equations (2.32) and (2.33) we see that the expansion coefficients in the core are

related to the expansion coefficients in the outer shell by the rule,

a0l) .a(N+I)
(rn,n) (m,n,)

0 a,(N+I)
Q(1)Q(2)... Q(N) (mn) (2.34)

b0l) n n b(N+1) (.4
(m,n) (m,n)

323(N+)
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This gives us four equations in four unknowns, since we assume that the expansion co-
.(N+I) p(N+I)

efficients a(N,1) and *(N,+) are determined; these expansion coefficients could define a

complex source such as a radar or laser beam in the near field (Barton [8] and [9], Pinnick
[39] and [37]). Solving equation (2.34) we find values of a(1, and that

On1 n)d an j( i asmngta

and ( are both zero, we can easily obtain the expansion coefficients in every

layer of the structure. If we define the matrix R(P) by the rule,

R () - T(P+') (Rp) -Tn(P) (Rp) (2.35)

We see that
(p) a(p+I)

=R(P a"•') (2.36)b(p) b(p+1)
(m,n) (.(,3)

(mn) (m,n)

These computations are facilitated by the fact that we have exact formulas for the

determinant and inverses of the 4 by 4 matrices T(P) Let the determinant of T(P) be defined

by

A 
(, = ,G)) )W(a,3)

{ (14 = (1,4) np( (RF)Zb(T)

{ (b PW 1•.(b3 (14) ) W(1.3 (•,I) +(1

which means that the determinant A,) is the product of two Wronskians SJ(" and 1(b)
"(",p) (nP ()

where
-Z(b"l) (R ) [(b.s) ( W(b)(R) Z(b')(Rb) (2.38)

(nip np) P (nip) (nip) P(nip)

We find that

(np R)= (k Rp) 2  (2.30)

This enables us to get exact formulas for the entries of the inverse of this matrix. If

(TnP)(Rp)-1 )(ij) denotes the entry in the ith row and jth column of the inverse of the

matrix T(,P), then the entry in row 1 and column 1 of the inverse is

(Tp) (.Rp)-,) (j,1) _W (.,-3) ()) °,•(RP) 14 ,•(np R/n ), (2.40)
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The (1,2) entry is
-- w(,(,?, ,) A,•p , (2.41)

The (1,3) term is

-(n €,';)(4)(") .,"€-,,(Rp)/•, (2.42)

The (1,4) term is

= - V/(b,1) (a,3) (np() )/A^, (2.43)

The entry in row 2 and column 1 of the inverse is

(T.) Rp)-' (2 1 = Zk(R ,p)(p) -W(b)

T= (,,) (.,,),s) •,) (R,)/A,, (2.44)

The entry in row 2 and column 2 of the inverse is

= -- ,,, (R, ). Pa 3) (n,p)(Rp)/Ap, (2.45)

The entry in row 2 and column 3 of the inverse is

(Tnp)(Rp)- 1 )(2 ,s) = 0 (2.46)

The entry in row 2 and column 4 of the inverse is

(Tn)(Rp)-')(2,4) = 0 (2.47)

The (3,1) entry is

(T)CRp)-(•)(s,.) = 0 (2.48)

The (3,2) entry is

(T)(p)-')€(,2 = 0 (2.49)

The (3,3) entry is )(Rpl•,)-,)€•,:• wC•,)CR ).W€o)
n(p) P()W p) (Rp)/Ap, (2.50)

The (3,4) entry is
(T4p)Rp)-')(3,,) W(b )()(R )W)/,,, (2.51)
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The (4,1) entry is given by
(T.P) (Rp)-')(,,,1) Co's) (R Wb)(p/p,(.2

(, )/A,, (2.52)

The (4,2) entry is
(Tn-')(R,,)-') (4.2) (a,,l,', ' 1) (R CRb) / (2.53)

The (4,3) entry is (T,,• (R)-,)(,,s) c,,•!s)( c,,a Rpl•p
--ZK, P.(Rn)1V(•,)Rp)/Ap, (2.54)

Finally, the (4,4) entry of the inverse of Tn(P) is

(TnP) CRp)-')(,,,) = Z.,b,,)R (a•,'O•!) ( R.) /'&P, (.

Z~~R)'(n,p) (RP) I,,(2.55)

We have therefore obtained round-off error free expressions for the entries of the inverse

of T,(P)(Rp,). Thus, except for the expression relating the expansion coefficieits in equation

(2.34), all computations are carried out by exact formulas. The matrix inverse computation

requires no subtractions or additions and consequently there is no round off error if the

Bessel and Hankel functions of complex index and their derivatives can be computed

precisely.

3 Spatially Complex Sources

We provide the user with an analysis of the response of an N layer structure to spa-

tially and temporally complex sources of electromagnetic radiaton. Let E(z, y, z, t) and

•(x, y, z, t) be the electric and magnetic fields of a complex source with Fourier transforms

E(z, y, z,w) and H(z, y, z). We suppose that this radiation source exists in layer

pE {2,3,...,N + 1}.

where N is the number of layers in the spherical stucture. Let us suppose that this energy

source in layer p has an electric vector (see equation 2.1) given by

F a(rnn) Z~a) (r)AJ(7~n (0, 1 ) +
(m,n)E I

326



S,-(r) ,. ) ,0) +
[-n~ + ) {~)}J 11n kr Lo(m,tt(94) +,

b~~m ~ (rZ( a\,.Ab1) (r))) ff(MA010)(,d (3.56)
k, , %)

Observe that the coefficients air)m,) are determined for every p > 1 by the relation,

LIM If fC(,.) (z, ,zw). A(m.,,)(0, 0).sin(O)ded;

r --ý Rp. [ I f fC() AX(mnn)(•0, 4) A.(m,)(0, 0)ain(O)ded]

= (m, €,n,, ).,-,) (3.57)

where

C(r) = {(z,!,z):x2 + y 2 + Z2= r,} (3.58)

Thus, equation (3.57) gives us the expanzion coefficients for the representation of . just

outside the sphere C(R.•_ 1) defined by •q'4ation (3.58). The coefficients 1(), are deter-

mined by the equation,

LIM I E fc~ .,(xjz,w). (m,n)(8, 0),*)sin(8)d 9d4,
f f(r) '. (-.T

r -+ R,-.1  fI fo(r) .B(m,n)(0,46) .B(.,,)(8,4)*Sjn(0)ded4,

-1(p)l)(-W(b.,)(RPel)) (3.59)

where, using the definition (see equation 2.11),

W~b ') 1 (a) (bZod)
(nP)r) = P1 Tar (nZ(p) (r) (3.60)

and the functions A(m,.)(8,0 4) and B(m,n)(O, 0) are given by equations (1.4) and (1.5).

We will show that the integrals in the denominators in equations (3.57) and (3.59) can

be determined by an exact formula. To exactly evaluate the integrals appearing in the

denominators, we use the equation (see Bell [10], equation 11 and equation 18) which

states that

fI-fr . d P1 Ncos(e))) + M2rn 8(0) ain(O)dOdo =

2 (2n ( -)n (n +I) (3.61)
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where the functions PI,(z) are defined by

( 1 n (1 -- -2 )/2

P()=-2nnl D+(z 2  (3.62)

of the associated Legendre function.

We use the basic definition

P,(z) ((1 2-- ) Dn+m(] 2 - (3.63)

of the associated Legendre function. If

x = Cos(6) (3.64)

then

dd z (3.65)

and

fo Pn (cOs(O))28 in(8)dO =

+1 (1 - z')m(Dn+m(z2 - 1) 2)dz = 2(n +m)!
22n(n!),i mx

-1(2n + 1) (n in!(6)

The orthogonality relationship follows from the fact that

d _ dx d = -in(o)d (3.67)dO dO dx = 3.

implies that

A~7) [ d~ [P,(co's(e))] [ dP.'(co.s(0))] sin(e)de
(n dO dO

-/11(I- 2)•'xPrim (x) T'• Pm (x) dx (3.68)

The derived identity then follows from an integration by parts and a use of the differential

equation relationship,

(1 - x 2) [ yPn()] + (-2x)T-P."(z)

[-nn + 1) + 1- ] Pn(x) (3.69)

Details of the analysis can be found in ([11]) and the basic properties of P' are found in
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3.1 An Exterior Complex Source

We now define intralayer relationships tlhat give us the induced field when there are no

sources in layers indexed by

pE {2,3,. .,N}

where N is the number of layers in the sphere. The intralayer relationship yields, for a

penetrable core,
a ,-) ZL(N+I)

.,.) a(, n)
..(N+I)

0 SN t(N) 
(3.70)

(m,n) (m,vn)

We can separate the four, a priori unknown coefficients, from the known expansion coeffi-

cients of the known external source by rewriting equation (3.70) in the form

a(1) (N+1)

(m,,) 0 a(,n)

o a (N+1) 0
-SN (mC,n) = SN (N+) (3.71)

b(m) 0 *(n)
(N+) 0

Thus, relating the a priori unknown coefficients to the known expansion coefficients a,(N,,)
aKn)

and (N+1) reduces to the problem of finding the inverse of the matrix

7 = I- SN (3.72)

3.2 Interior Sources

We now suppose that there are interior sources in the layers. This could be important

in assessing the impact of a sweeping radar on a person living near the radar who has one

or more metalic implants to replace broken bones or clamps to hold them in place. The

potentially serious nature of this can be seen from the fact that ([54] p 40) has used this

concept to postulate a design for an electromagnetic missile.
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With interior sources, the expansion coefficients in the free space surrounding the N

layer sphere and the expansion coefficients in the inner core will be shown to be related

by affine transformations rather than linear transformations.

We model comp)'x sources in a layer by allowing an arbitrary representation of a source

in terms of an expansion in a Hilbert space of vector valued functions. We assume that

if the shell containing the source lies between r = R., and r = R,+ 1 and represent the

expansion coefficients of the electric field due to this source in the inner shell in terms of

expansion coefficients (P',,). We assume that these are given and represent a source

located at a point r = ? that is between r = R. and r = R,+,. These are obtained

by assuming that the source is unaffected by the medium and that the currents, say in

a dipole source, are used to represent an electric vector E,,. This electric vector is then

represented on the inner shell by the relations,

LIM [ff~~.(,y, z, w) . (m,n,) (6,4)) * ain(O) dOd4)

r -4, RV ffCt) A'(m,n) (0, ) A (rn, 0)(Oqs)in(O) d~dqS

(P) (, (3.1)=M "n~rf"";,•) (Rv)(3.1

The values of the expansion coefficients b(p)( of this source field on the shell r = R1 are

given by

LIM [f fc(,) EP (x, y, z, w) .B(mn) (0, )*sin(P)dedýi,

r --, [ f J (mn)(0, 4)) • ffC, ,)(O,4)'*8fCO)ded4 j!,(P) { W,("-x)T
.(m,,,) -.( (.,,) (R•,,)) (3.2)

Thus, we know the electric field due to the isolated source at this point on the shell

r = Rp. However, unlike the source in the space surrounding the N layer spherical structure

we cannot assume that the field is represented by these expansion coefficients and the
expasioncoeficiets ~•) (P)

expansion coefficients and P(.) used to represent the radiation emanating from

the inner shell, as there may be additional sources coming from beyond r - Rp that are

due to external sources and reflections of these sources from the layer r - R1. Instead

we approximate the representation of this source by a finite linear combination of vector

spherical wave functions and assume that at some point r = }A possibly just slightly smaller

than the location of the actual source, so that value of the field at the point considered
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would not be singular, we impose essentially an impedance boundary condition (Wu [54])

at r = R. which will give us a relationship between the general expansion coefficients

i(,•,)andP.(,•," and .(p',) and. bv(p) used to represent the fields when r < 14 and the
expansion coefficients a(P.+) (+) a(p+) bP+)hat are used to represent the(m,n) and #(,",+) a•Ld a(,•,) and b.,)thtae sdtorpesn h

fields when r > !?,. We suppose that the magnetic vector just outside r = R-7 is denoted by

&A+ and that the magnetic vector just inside r - is given by A; and that the boundary
conditions used to relate the expansion coefficients and (,and ,- and (,,')

. z(m,+) ,a p,) ( m,+t) .( m,+ )
for R1 < r < Ap to the expansion coefficients " and-(p,+,) and ap) and "(,, for

P (mn) f(m~n) (m'n) (m,n)

R1+1 > r > 1•p are continuity of tangential components of E and the nonhomogeneous

impedance boundary condition

il (1-f;)=(iw E+oj(r)~ (.E,*)p (3.3)

Taking the dot product of both sides of equation (3.3) with respect to the vector B(m,n) (0, 3)

and integrating over the sphere r 4 we see that
i S(P,+). kW",Ok) +.(P,+) k W(,- (p) I• +

p) (m,n) P (n,p) (RP)+ P (nep)

( -s ,,-) { (W(b,1) ) (p,)1 (p,+) W(b,3) (' ))J

S--( ) a(p')b_ k w(,()P ( (k) W((' s (_?abS))•}+
W (p) t(n,n) P (n,p) T. + -( m,n) P (n,p)

( i ) {a(P')b("'-' (Wý(b.1)( Rn)) + a(P)Ofi,7, (14,3)())I+
(i~ O')-o.•hr •€• (b, 1)t• -(p) W'Cb,3)(I, •] (3.4)

--W~p +- a (p) -1(M,n) (n,;) (Rl•P) -- P(rtn,nt)• (n,p)•,•']

Taking the dot product of both sides of equation (3.3) with respect to the vector A(m,,)(0, 0)

and integrating over the sphere r = Rk we see that

i ) [ (" + c") 'b(p'+) Z(b"') •(pf+) (b,3)

(W,~(P)[ (2+c ~ (m,] ) z(nI(AR) +OI(Zn,)Z(nlp)(RP)

ct(P~a()a( P+ )Z(4)

M,n) (n,;) (R•) + ( (m,n) (,,,p) }+
_(), -_( Z ,(a, 1) 0.•) ( 3)/• 35

(iw,(p) + a(p )t) [a ,n) (.&p) -+ , ,&,(,)•- Z ( j (3.5)
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Using the fact that = 0 and (Mi,() = 0 and that the coefficients Z[.,) and

completely known gives us a simple relationship between the expansion coefficients (see

equation 2.12)
-a ( • , .' q ,) Z (a . ) (p+ ) € , . ' ( a ,3 ) •

~ Z~'~(R,,)+ a(p.-) Z~? 3A)I
=[a•,-) Z•a 1)(,1)c ' ')'('-) -(R) (3.6)= "(m,n,)-(npj) •- J+ •(m,r,)"(n,) " J

and mulitplying both sides of the relationship

Ep •R)-4 = •p (3.7)

by B(m,n) (9,4) and integrating over the sphere r = R, we see that

Sb(p,+)WTV(b,")I (fp (p,+) W(b,s) (4
- (m,n,) "(,,p) (MA/ N'm, O" -,)t l

[-b ',-) W(,,1) ,(p,-)W(b, 3) (fA) (3.8)
-(m,) (n, ) , (n,p)

We define

4(m,) = 0 , (3.9)

and

=(P ) iwe() + OW))a(M) fl) Z(":)•,() (3.10)(,,,. (n ) + • (m,,,,) -(,,p) ,'P ( .0

and finally,

(iw,) +o()*n).3) m,- Wn:) (T.,) (3.11)

The expansion coefficients on opposite sides of the sphere r = hP are in view of equations

(3.5), (3.4), (3.6) and (3.8) and equations (3.9), (3.10), and (3.11) are related by
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a(P,-) a(p,+) ,.e(P,1) ,
(m,,) "(m,,) .(.,)

a(p,-) Ct(P,+) (P,2).
(-.") = (mn) - -s(-,€") (3.12)

b•)') b!•,+) (n,p) &.3~)
(mn)t,rn) O.(,n)

fl(P,-) #(P.+) &.e4)
n) l-,-) (mn)

To complete the determination of the relationship between expansion coefficients in one

layer to those in the next one we use equation (2.32) and equation (2.33) to write

P,.-) a(,+ 1.- ) e, . 1)..
a (mrn) (,n) e(mn)

(P.-) (p+1,-) &.p,2)
-(m,n) Q(p) a(m,-) -1 -.(mn),bdp,-)"n b(p+l,-) - P, ) &.3)• ( .3

(m,n) (m,n) (3.13)
/P1•,-) #(p+I,-) &.4),

,) (•,n) (M, .) d

Now as there are no sources in the core region we have for the simplest structure with a

source in a single shell the relationship

a(,+) a.(3,-) ,1)
a(m,n) a(m,n) e(m,n)

0 () (2 i(3,-) •(2,2)
=oc,+) n b (3•.-) n_ S 12)s (2,3.,,) (3.14)

(m,n) (m,n) (m,n)
0 0(3,-) e (2.4)

omn (i,ti)
(,,',,.) & .,),,.3)where the known field representation coefficients (p,)) (p,2) and (p,4) and are

(m,n)' I (m,n) ^11 '(~n r
given by equations (3.10), (3.9), and (3.11) respectively. The general relationship is given

by
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(i,+) a(N+I,-)
a(m,n) a(*,n)

0 t(N.ei,-)
=_ Q(I)Q(2)... Q(N) a(mn)

b(",+) n' n' n (N+I,-)
(m,n) (m,n)

(m,n)
N-i &.)
1 Q(I)Q(2) .. (p)•- *(n,) (.

P=1 n(mn,, )

(m,n)&(,4)

If _N+I,-) a (N+i,-) of the external source are
As before, if the expansion coefficients alm,n) and m(,n)

known, then we have a system of 4 equations in 4 unknowns connecting the expansion

coefficients in the source free core and the expansion coefficients (N+I,-) and j'(,N,-) of(m,n) an (n)

the radiation scattered by the N layer bianisotropic structure.

4 Energy Balance

In this section we consider the unusual energy balance relationships associated with the

interaction of radiation with a bianisotropic material ([13]). The energy balance analysis

for an isotropic sphere is carried out in great detail in (Bell [11]). An interchange of dot

product and cross product in the triple scalar product implies that the total absorbed

power P, is given by

Pa = (1/2)Re f /ClRN) (EN+l x HN+i) "idA

where we have used the fact that on the spherical boundary r = RN we have

n x EN+i = i x Ej. (4.2)

because tangential components of £ are assumed to be continuous across boundaries sep-

arating regions of continuity of tensorial electromagnetic properties. We next make use of
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the fact that for an impedance boundary condition on the surface of the scattering body

that

01ý, - x-i) x = A - i.)i,) (4.3)

where a, is the impedance sheet conductivity. From equations (4.3) and (4.1) we see that

(12)e C(~E[N. (0 (g (;.)ii))] dA (4.4)
P•-(1/2)Re f fc~ n)( xtj)".•A

Using thi, and the fact that

div(E x HI) = H'. cur,(f) - i. curl(Hf*) (4.5)

we derive a formula for the internal energy density. For a sweeping beam or a stationary

beam interacting with a bianisotropic body or a stationary beam interacting with a moving

body (Hebenstreit [29]) there may be unusual couplings of the electromagnetic energy with

the structure. For a general one layer structure covered by an impedance sheet the internal

energy density is given in terms of the bilinear form

b(•, H)=

1V (.g; (~+ Fo).4) + (f2 -(-iw'c + )f*)}I dv+
Iva {�.�q(a)#) + (Ec. (-)H;)} dv+

-/fV2 {(2 • '-) + (fl; • wH)} dv+

!E2: +(i2. -. ii) .- )( da (4.6)

where S2 is the bounding surface and V2 is the interior volume. This can be used as a

source term for the heat equation and can be used to predict the response of the structure

to a sweeping beam or the response of a moving structure to a stationary beam (Ferencz

[25], Gamo [26], Hebenstreit [29], and Shiozawa, [44]). Energy balance computations were

carried out in (Bell, Cohoon, and Penn [10], [11]) for isotropic structures and in (Cohoon
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[15]) for anisotropic structures. These energy balance computations involve comparing the

total energy entering the structure minus the total energy reflected from the structure to

the sum of the integrals of the power density distributions in the impedance sheets and in

the layers themselves.

4.1 Computer Output

Electromagnetic Energy Deposition in a Concentric Layered Sphere.

Frequency a 1.O00E03 MHz.

Field Strength = 1.00 V/M Number of Regions = I

Layer 1

Relative Permittivity (Radial): ( 4.OOE+01, O.OOE+00)

Relative Permittivity (Angular): ( 3.00E+01, O.OOE+00)

Relative Permeability (Radial)i ( 1.00E+00. O.OOE+O0)

Relative Permeability (Angular): ( 1.00E*00, O.OOE÷O0)

Conductivity (Mho/M) (Radial): ( 5.00E-03. O.OOE+00)

Conductivity (Mho/M) (Angular): ( 5.00E-03. O.OOE+00)

Impedance Sheet Cond. (Mho/M): ( O.OOE+0O, O.OOE+00)

Surface Boundaries (cm) - 3.OO00E+00

Average Absorbed Power Density

obtained by integration of the Poynting vector
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over the surface and dividing by the volume

of the sphere is = 1.22227D-03 W/M**3

Total Absorbed Power

by integrating the Poynting vector over the surface

is - 1.38235819D-07 Watts.

Total Absorbed Power by Volume Integration Method a 1.38235800D-07 Watts.

The fact that the last two numbers nearly coincide represents a confirmation of the correct-

ness of the coding implementing the solution for an anisotropic sphere. The determination

of the total absorbed power by the Poynting vector method is described in (Jones [33])

and in full detail in (Bell, [111). For the plane wave problem described in Jones ([33]) we

can give exact formulas for the total absorbed power in terms of the total power entering

.the sphere minus the total power scattered away from the sphere ([33], page 504, equation

126). We let a(ft,N+1) and 13(n,N+I) denote the expansion coefficients of the scattered ra-

diation and by carrying out an energy balance book keeping on the boundary we observe

that the total absorbed power is

-. k 2 "oo Re E(2n + 1)(c(n,N+ 1) + A(',+I)

Q 0 12 V E (2n + 1) (1 a(nN+1) I' + I 13(n,N+1)12 (4.7)

This is the referred to as the Poynting vector method in the computer output; the last

number is the result of numerically integrating the power density distribution over the

interior of the sphere. The difficulty of this numerical integration is evident from the

following plot of the internal power density distribution for an anisotropic structure with

a radial permittivity that is higher than the tangential permittivity.
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Absorbed Power Density in an Anisotropic Sphere

8.

2 .

4-I

0.

ý3- 4.

0.
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4.2 Thermal Response to Radiation

The absorption of radiation results in a temperature increase. An energy equation

describing this change of state is given by

De (c\ ()P out+

(-pdiv(i- ) + div(Kgrad(T)) + 41, (4.8)

where e is equal to cuT with T denoting the temperature, and c. denoting the specific

heat at constant volume, 4b is the viscous dissipation function (Anderson, Tannehill and

Pletcher [1], pages 188-189), 6 is the fluid velocity, p is the density, p is the pressure, 1 is

the tensor thermal conductivity, the term representing the transfer by radiation from one

part of the fluid to another is given by (Siegel and Howell [43], page 689)( ou , = div (16T 3 • ad(T)), (4.9)

where the internal radiative conductivity is given by
16a•~Ts

k- = ar, 3 (4.10)

where aj is the Rosseland mean absorption coefficient (Siegel [43] , p 504 and Rosseland

[41]) and where a. (Siegel [43], page 25) is the hemispherical total emissive power of a

black surface into vacuum having a value of

a, = 5.6696 x 10-8 Watts / (meters 2 °K ), (4.11)

and where if B(Eg, ) repre. ents the absorbed electromagnetic energy per unit volume,

whose integral is, (after conversion from cgs units) equal to the b(E, Hl) given by equation

(4.6) then

(-)Q 1 " = B(EFI). (4.12)

In general solving equation (4.8) requires the simultaneous solution of the Maxwell, conti-

nuity, and momentum equations (see Jones [33], p 775). However, for low levels of radiation

the energy equation (4.8) reduces to a simple heat equation with a source term which can

be solved by dovetailing ([12], [14]) it to the solution of the Maxwell equations. The

experimental verification of the latter procedure is described in ([12]) and in ([14]).
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The Response of a Cylinder with

a Thin High Index of Refraction

Bianisotropic Coating

to Electromagnetic Radiation
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Some new methods of developing the response of a thinly coated metal-

lic cylinder to electromagnetic radiation have been developed. In contrast

to theories developed by (Cohen [16], Wait [42], and Yeh [47]) the represen-

tation of the fields in the thin coating uses no Bessel or Hankel functions.

This method eliminated a severe round off error that was incurred when

using the traditional solutions (Bussey [11).
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1 VECTOR FIELDS IN CYLINDERS

The vector fields in the interior of a penetrable layer and outside the

cylinder are represented in terms of the vector fields

A•.nh) = exp(im8)exp(-ihz)', (1.1)

B(,m,h) = exp(irmO)ezp(-ihz)', (1.2)

and

C(mh) = exp(imr )exp(-ihz)e",. (1.3)

where in terms of the unit vectors e4, e',, and F, of the cartesian coordinate

system we have

4r = cos(O)e4 + sin(e),• (1.4)

and

S(O) 4 = -sin(O)le + cos(O)e (1.5)

and

ex = e, (1.6)

Thus, in terms of the unit vectors of cylindrical coordinates after multi-

plying both sides of equation (1.4) by cos(8) and multiplying both sides of

equation (1.5) by -sin(f) and adding we obtain

S= coa(O)4, - sin(O)eo (1.7)

and similarly

ey= 8in(O)ef) + cos6(O)4 (1.8)
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Hence, if an arbitrary vector is represented in Cartesian coordinates as

then

V = (cos(8)V' + 8in(9)V,)'+

(-sin(O)V. + cos(O)iV)e6 + 1. (1.10)

and more importantly if a vector 17 has radial, theta and z components

given by V,, V# and V, respectively, then

vecV = (Vcos(6) - Vesin(9)),,+

(V.sin(8) + Vecoa(6))'te. + VS. (1.11)
y

If the electric field is represented in terms of cylindrical coordinates,

then

curl(V,',. + Vo'e + V.'.) =

( Lgv. V\ 08V _, IVS
rO 80 z +/ Oz or

e, (1.12)

We will represent the internal and external fields as a linear combination,

with coefficients in a ring of functions of the radial variable, of the vector

fields defined by equations (1.1), (1.2), and (1.3). The identitities

cur,(F(r)C(m,n,) =

iMF('),(,,,h) + ihF(r) B(,n,h) (1.13)
r
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curl(F(r)A( ....=

- ihF(r)A(,.,h) + ( ) imd(,,h) (1.14)

curl(F(r)B(m,n))

ihF(r)A(~,hI) + (-()(rF(r)))Cmh)(.5

2 COORDINATE FRAMES

Following Ariel Cohen ([16]) we describe coordinate frames which are

used to represent incoming, internal, and scattered fields in laboratory,

absorber, and detector coordinate frames. We lt e', denote the unit vector

along the z - axis of the laboratory frame. We suppose that vece". is the

unit vector along the axis of a cylinder which passes through the origin of

the original coordinate system. We suppose that

e". = s,(8,)cos(0.)F + sin(8.)sin(0.)e' + coj(9.)•F (2.1)

We define the x, axis by the cross product,

. = (',* x e,)/sin(Oo) (2.2)

so that

F=. sin(o.)e= - cos(,.)g' (2.3)

4. --coS(O)cos(¢.)e' + Cos(O,)sin(¢.) ' - sin(9O,), (2.4)
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We see that we can describe the electric vector of the incoming radiation

by the rule,

Es = EoeXP(-ikox +-iwt)iZ (2.5)

3 MAXWELL EQUATIONS

We assume that the coating material is bianisotropic, a material more

general than a chiral material. The Maxwell equations are, for time har-

monic radiation, given by

curl(E) = -iWO,, - 3 (3.1)

and

curl(,' ) = (iW, + + +.7# (3.2)

The radiation source term which gives the power density is given by

()t Qin=

(1/2)Re { . (iwe + r)E + E, ri'-

x8f(r)o,), I E,,n.e1.,ial2 (3.3)

where if 0f0 is the surface containing the impedance sheet, then

in X80O. I Etangentiai 1 dv Ora .ftanential12 A (3.4)

is the characteristic function of the surface supporting the impedance sheet.

We consider non plane wave sources such as tightly focused laser beams
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interacting with these structures ([12], [36], [25], [6], [5]) and use the energy

densities as a source term in the energy equation to determine the future

state of the cylinder.

4 Cross Products

The numerical problem associated with scattering of radiation by thinly

coated perfect conductors reduces to the problem of evaluating the cross

products of Bessel and Neuman functions (Abramowitz and Stegun [1],

page 361 formula 9.1.32),

p, = J,(a)Y.(b) - Jv,(b)Y.(a), (4.1)

q,= J-(a)Y.(b) - J,(b)Y,(a), (4.2)

r=. 7 ,J(a)Y,(b) - J.(b)Y.(a), (4.3)

and

=,, - J.(a)Y•(b) - J.(b)Y.(a), (4.4)

Observe that the recursion relation is

J,+i(z)Y,(z) - J,(z)Y,,+i(z) 2-(4.5)
7rz

If 9,(z) is one of J•,(z) or Y,(z) then we see that

9,+I(z) = -9,,(z) + -9,(Z) (4.6)
Z
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We see that equations (4.5) and (4.6) imply that

2
-J'(z)Y,,(z) - J.,(z)Y,'(z) = -- (4.7)

7rz

We expand the Neuman function and obtain

Y,(b) = Y,(a) + Y-(a)(b - a)+

j2{(F(j,LjY.,!(a) + G(j,,,)Y.(a)) (( ~a.) } (4.8)

The function 9,(z) satisfies Bessel's differential equation,

z2g'(z) + zg',(z)+

(Z2 )(z) = 0 (4.9)

Dividing all terms by z 2 we see that

S1 G."'(Z)

z

Differentiating all terms of equation (4.10) we see that

z _ 2 1}

+ I(Lv' + I g"(Z) (4.11)

Differentiating both sides of equation (4.11) and using equation (4.10) to

remove the second derivative terms we find that

Q~4~(z = [(6V2 -6) ,z
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[11V2+ V - ((1+ 2) +) + 1] (Z) (4.12)

We see that there are two forms for the derivatives given by

n ( (2n,

k (z) (4.3)

and by
Cj.2r.' (Z) = (--E ( ) W()+

n (2+1)

z)-'• 9 v(z) (4.14)

k=O

Substituting the expansions into the expression for q, we see that

q. = Jv(a)Y.(b) - J.,(b)YL/(a)

Jl(a) { Y,(a)+

[F(j,,)Y.j(a) + G(j,.,)Y,(a)])'
(j=2 U

-Y.,(a) {(J'a) +

-[F(II,)J:(za) + G(',(a)] J- }l.
ji=2

The Wronskian relation implies that

2q, - +-•
27r
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=2(- 1)- (4.15)F- 17 (j - 1)i

In this expression there are no Bessel functiqns and no round off error.
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An exact formula for the thermal response of an N layer spherically

symmetric structure to electromagnetic radiation has been determined. The

thermal conductivity, K, the permittivity, e, the magnetic permeabilityp,

and the electromagnetic conductivity, a, are assumed to be tensors.

1 INTRODUCTION

In this paper we extend previous results ([1],[2]) and give an exact so-

lution to the problem of describing by exact formula the thermal response

to low energy electromagnetic radiation of an N layer electromagnetically

anisotropic structure, or said differently a spherically symmetric structure

where the permittivity e and magnetic permeability, p, and the complex

electromagnetic conductivity o are tensors, and which is also thermally

anisotropic in the sense that the thcrmal conductivity, K, is also a tensor.

The heat transfer equation is written in the form,

Ou 1 (1 ( )

jin(ina

where if the magnetic permeabilities IA and the permittivities e, and the

electromagentic conductivity a are diagonal tensors in the spherical coordi-

nate system and their e and 9 components are equal, then the source term

has the form

364



S = FowIm,(,)(I He I' + I H# I') + wm(M,,.)(I H, I')+

wm(e)(I Es I' + I E. I') + wm(er)(I E, 12)+

Re(o)(I Es, I) + (I E, 1')] (1.2)

where F0 is a factor for converting MKS energy densities to centimeter gram

second(egs) units of calories per gram degree Centigrade that is given by,

1
F0 = 2 x 108 x 4.184 (1.3)

In order to make use of Legendre functions with integer index in our solution

we assume that

K K# (1.4)

and

K = K, (1.5)

We will make use of the Legendre functions P (cos(8)) and note that they

satisfy the ordinary differential equation

1 d .,

,in2(O) P,.(coa(8)) -- n(n + 1)P,,(coa(O)) (1,6)

which is equivalent to

d 2 dW
d((1-z )-jz-)--+(n(n-+-1) l- M2)W 0 (1.7)
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where

z = coa(0) (1.8)

since (1.7) implies that

dv dv dz
dO dz•dO

which implies that

dv dv
T = -Sin(O)- (1.10)

(Hochstadt [3], page 164). To see this more clearly note that

d (l1-z2) 
-)

1-1 dW\ .I (co-S(6)l d 2PW(.1- 2cos(O) sin(o) dO/ + jin'(8). Iin 3(8) +d#2

Therefore, we see that

d ((1 _ 1 - ) =cos( -dW +'W (1.12)
dzk Zdz) sin(o) do+ d9 2

This implies that

d d W\ 1 d ( )-W- (1.13)
d z dz sin9 dO dO

Having developed this understanding of the formulation of Legendre's dif-

ferential equation we proceed to define the finite Legendre transform (not

the integral over the index) by tht rule,

'2 + (( n )! + n + m)! jv(O)P,,(coa(O))sin(O)dO (1.14)
(-( n) + m)!6
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for m being positive and further restricted by the relation,

me {, ,..., n} U {-1,-2, ... ,-n} (1.15)

and

=~ (2nL~ + j v(*)Pn~coj(8)),9in(8)dO (1.16)

In carrying out the simplification of the heat transfer equation we need

in addition to the finite Legendre transform, a finite cosine transform de-

fined by the rule,

C.U i= coj(mO)u(O)dO (1.17)

A calculation shows that

1V8 2U d4=J.im Ou- cos(mO)5-,()d( = ¥ fd

= -m 2C.,u (1.18)

We now develop a formula that enables us to simplify the energy equa-

tion by successive application of the finite cosine transform C, and the

finite Legendre transform £C. Using Legendre's differential equation and

integration by parts we find that

MCm ( 1 8 .Kinl i Ou
n rain(a) 8978)

£Y'Cm I (K 1 inOu) -n.2 1)KIZCm (1.19).'nC (rsin(O) aoc rain(O) FOr

since the terms involving m2 cancel out if the two tangential components

of the thermal conductivity tensor are equal.
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We now apply the combined finite Legendre and finite cosine transforms

to all terms of the energy equation,

0 = 18 (r2K,. \+
pc('C.cnu) = -72 Fr - (--nU). +

-n(n + 1 ) KL'Cnu - I'2Cbu + £',,IC,,S (1.20)
r2 nn

We simplify the writing of the above equation by introducing the variables

U(,mn) = I.'Cmu (1.21)

and

S(m,.n) = 'n"CnS (1.22)

we, therefore, see that the original energy equation may be transformed

into the relation,

a (v.,.) = 1- a r2K, (r.,. +
PC~j(U(m~n)) 7, F~r ( (~U(mtn))) +

-n(n + 1 ) KU(m,,) - bU(m,,) + S(m,n) (1.23)
r.2

We create another finite transform with respect to the radial variable

by making use of the oscillation theorem to select a series of radial eigen-

functions, Z(n,k)(r), satisfying

(A(n,k)r pc-- Kn(n ± )- br )Z(n,k) + W(rK- r~ Zn~)(r))0.(24r (K,- g(r)Z,., T= 0. (1.24)

the regularity conditions that 3tate that

d
K, d z•.,k) (),)c (1.25)

Tr
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and

Z(n,k)C (1.26)

where C denotes the space of continuous functi - nn the real line with the

origin removed. We now multiply all terms ot our transformed equation

(1.24) by Z(,•,,) and integrate from 0 to RN, which is the radius of the

outermost sphere in our N layer structure. Upon doing so we obtain the

relation,

Weueintegration by parts to simplify equation (1.27), and we find
Ihat

Z(nk)(RN)RKr(RN)5 U(m,n)( RN ,

NRN r2K,_CU(m) n) (d-rZ(nk)(r)) dr

=~~~ Zln,k)(rN)dr + rf(N)'U(,nl(Nt

that

+i U.n ,k )(rt)0 (r K2-.Z(kn )) dr (1.28)
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Observe that the functions V = U(.,.) or V = Z(,,k) satisfy exactly the

same boundary condition, namely the Newton cooling law constraint given

by

KV(')(RN) + HV(RN) = 0 (1.29)

and upon replacing the derivative terms by using this Newton cooling law

relation we see that

Z(n,k)(RN)R2NK,(RN)U(('m,n)(RN, 0-

RNKr(RN)Zg(h)(k)(RN)U(m,,) (RN, 0)

- Z(nk)(RN)RN(--HU(m,n))
2

- RN(-HZ(n,k))(RNv)V(mn) = 0 (1.30)

Thus, we find that

RNZ(n.k)r ar 2K Kr U(m,,,) (r, t)) dr

jRt U(mn)(r, T) (rK Z(nk)(r)) dr (1.31)

Substituting equation (1.25) into this relationship yields

f0RN U(,,n) {K.(. + 1) + br2 - A(n,k)r2pc} Z(n.k)(,')dr (1.32)

Using these relationships in equation (1.28) we find that

19 (,.)3(r,7t)0Z.,k)(r)pcr 
dr
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- A(,n,k) 10oR U(m,n)(r, t)Z(,,k)(r)pcr'dr

+ JoRN S(.,n)(r,t)Z(nk)(r)r 2dr (1.33)

Thus, if we define the finite radial transform, T

T(nk)(f) f°R f(r)Z(nk)(r)pcr 2dr (1.34)

foRN Z(,h,)(r) 2pcr 2dr

then if we let

b(mm')'(t) = T(n,k)•,£Cm () (t) (1.35)

we see that
" T(n,k)U(m,n) + A(n,k)T(.,k)U(.,.) = b~m'")(t) (1.36)

so that if we define the expansion coefficient by the rule,

(m,n) -
a')( = T(.,k)£4CmU (1.37)

then the problem reduces to that of solving the ordinary differential equa-

tion
d T A(,k)a'n')(t) = bi"")(t) (1.38)

The solution of this differential equation is given by
ak ex-p(A( ,k)(t- r))b(n'(r)dr (1.39)

T))bmmn) (T•)

where the term b'" n) is defined by equations (1.2) and (1.35).

For a variety of pulsed heating schemes ([2]), this integral has been

evaluated exactly. In doing so we have made use of the dramatic difference

in the time scales of conductive and radiative transfer in the materials being

irradiated.
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2 THE RADIAL FUNCTIONS

We have seen that the radial functions satisfy the ordinary differential

equation,

+(r2+Z nk) +

{ K, - b n(n+1 Z(,.k) } 0 (2.1)

We let

- b) 2  (2.2)

in each layer. Then (2.1) and (2.2) imply that if

W(Z) = Z(n,k)(r) (2.3)

that then

z2 W( 2 )(z) + zW(1)(Z) + 1 , )K W=0 (2.4)

Rearranging the terms involving the derivative we find that

- I±) (zW(z)) + (1 +K ) W (2.5)

Thus, the radial functions are given by

W = 'T'(z)= -v'rJ"+ 1 /2(z) (2.6)

where
ý1 n(n + 1 )K(27

V=-1/2+ + K (2.7)
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3 EIGENVALUE DETERMINATION

We are seeking by computer algorithm a solution of an ordinary differ-

ential equation, dr (r 2 d Z(",k)) +

{ A(n,,)Pc - b n(n + 1)K } -= 0 (3.1)K,. K, I~~)- 31

which has a singular point at r = 0, and piecewise smooth coefficients with

the additional property that one of the coefficients depends on a parameter

which we have denoted by A(,k),k, where the solution, Z(,k)(r) and the prod-

uct of the radial conductivity K, and the derivative of Z(n.•') are continuous

and

,- .. ,(r) d Z(n,k)(r) + HZ(n.,k)(r) = 0 (3.2)

These eigenvalues and eigenfunctions are obtained by a shooting method

by defining Z(r, A) to be the solution of the ordinary differential equation.

S(r2 Z(r, A)) +

Apc-b n(n 1)K Z(r,) = 0 (3.3)

which has an integrable singularity at r = 0 and which satisfies the regu-

larity conditions and the Newton cooling law boundary conditions at the

outer boundary of the sphere.
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4 RADIATIVE HEATING

Because of orthonormality of the transformations we find that the differ-

ence u between the induced thermal excursion and the ambient temperature

in the irradiated solid is given by

u(r,O, 0,t) = al"m)(M)P,'(cos(0))coS(M q)Z(f,k) (r) (4.1)
k=- n=O m=O

where the expansion coefficients are determined by equation (1.39), and

the heat source term is given by (1.2). In the computer code the expansion

coefficients are precomputed and saved. Once the expansion coefficients

are known, the microwave induced thermal excursion can be computed at

thousands of points for a modest computer cost. The entire code runs on

a personal computer.

In the following sample computation, which gives a comparison of radi-

ation induced temperature increases measured with a Vitek non field per-

turbing thermal probe and predictions of the computer program, a dielectric

ball was enclosed in styrofoam. The calculation is for an isotropic muscle

equivalent spherical structure with a radius of 3.3 centimeters exposed to

1.2 Gigahertz continuous wave radiation with a power of 70 milliwatts per

square centimeter. The time of exposure for figure 1 was 30 seconds. In

Figure 2 which follows the Vitek probe was placed at the center of the

structure and the the power was turned off after 5.5 minutes.
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Figure I. A 3.3 centimeter radius saherical structure exposed to 1.2

Gigahertz with a power of 70 milliwatts per square centimeter
for 30 seconds. The structure is isotropic and the relative
permittivity is 50.4 and the electromagnetic conductivity
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Figure 2. The temperature at the center of a 3.3 centimeter radius
spherical structure exposed to 1.2 Gigahertz radiation with
a power of 70 milliwatts Der square centimeter as a function
of time. The power was turned off after 5.5 minutes.
The thermal and electromagnetic parameters are the same as those
of Figure 1. The Newton cooling law constant used at the surface
is H z 5.722 x 10"5 calories/cm2/degree°C/second
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ABSTRACT
Full wave solutions for the like and cross polarized scattered electromagnetic fields from an

irregular stratified structure consisting of three distinct media are derived. Two surfaces (boundaries)
described by a continuous function and first derivative separate the three media. The upper boundary
(first encountered by the incident wave) is assumed to be a flat plane. The lower boundary is a two-
dimensionally rough surface. Both the like and cross polarized scattered radiation fields are expressed
as double infinite sums. Each term in the sum is identified as a wave reflected by the two interfaces
several times before and after being nonspecularly scattered by an element of the rough surface. These
solutions have been shown to satisfy the reciprocity relationships in electromagnetic theory (without
artificially enforcing this property). In the high frequency limit, the full wave solutions reduce to the
physical optics solutions provided that the major contributions to the scattered fields come from the
neighborhood of the stationary phase (specuiar) points on the rough surface. The full wave analysis
agrees with Rice's perturbation solutions for surfaces with very small height and negligible slope. The
full wave solutions also reduce to the well known geometric optics solution when both boundaries are
flat and parallel. This analysis is used to remotely sense layers of liquid coating deposited on rough
terrain.

FUTURE WORK
The analysis presented in this manuscript is used to compute the Mueller matrix elements that
completely characterize light scattered from liquid coated terrain. This analysis provides the first
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phase for the solution to the general problem in which both interfaces are rough.

1. INTRODUCTION
Electromagnetic wave propagation in irregular stratified media is an important problem in remote

sensing and communications. In this paper, scattering and depolarization of electromagnetic waves in
a structure consisting of thrce distinct media is considered using a full wave approach. The upper
boundary is the y=O plane, separating free space (medium 0) from the coating layer (medium 1). The
lower boundary is the two-dimensionally rough surface y=h(x,z) which separates medium 1 from the
background material (medium 2). The rough boundary y=h can be regarded as a continuum of
differential surface elements of arbitrary height and slope.

The full wave solutions have been shown to satisfy reciprocity relationships in electromagnetic
theory [3]-[4]. These results reduce to the perturbation solution for surfaces with khrms<<l (k i3 the
wavenumber and hrms is the rms height) and negligible slope. They reduce to the physical optics
solution in the high frequenc limit when the major contributions to the scattered field come from
regions around the specular points. When both interfaces are flat and parallel, the double infinite sum
for the like polarized scattered field reduces to the well known geometric optics solution [4], and the
cross polarized field vanishes. Each term in the double infinite sum is identified as a multiply
reflected incident and scattered wave between the y=O plane and the rough boundary y=h.

2. FORMULATION OF THE PROBLEM
Generalized field transforms [1] are used to obtain full wave solutions for the like and cross

polarized electromagnetic fields scattered by the irregular laye-ed structure. These are used to express
the electromagnetic fields in terms of a complete spectrum of radiation fields, lateral waves, and surface
waves. In this work, only the radiation fields are considered since both the transmitter and the receiver
are assumed to be far from the surface. The transform pairs are given by

+00

y, z) =Y, Z f[ EV(x, v, w) -V + EH(x, v, w) ZHj ] dw (1a)
+00

HT(X, y, z) J HV(x, V, w) -h + ll1(x, v, w) IhH]dw (ib)
-00

where

+00+00+P +L,

EP(x,v, w) = J JET(X,y,z). (h-p x FL) dydz (2a)
00-00

+00+00

(Xv. w) = FIT(xyz) x NT) dy dz (2b)
0-0 -0O0

in which the vector wavenumber is given by

k', = u gRX + viiy + w R, (3)
I k, I i=0, 1, 2 (4)

for each of the 3 media in the layered structure. The radian frequency of the electromagnetic field is w
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and the complex permeability and permittivity of medium i are p. and ci respectively. Since an eiwt

time dependence is assumed here, Im(Pi)<O and Im(cj)<0. The transverse (y and z) components of the

electric and magnetic fields are ET and 11T respectively. The field transforms EP and HP depend on

polarization (P=H for horizontal and P=V for vertical). In (1), EP and RP are the basis functions, and

in (2) T and FIT are the reciprocal basis functions. These field transforms are substituted into

Maxwell's equations and upon applying the exact boundary conditions at each interface and using
Green's theorem (to avoid interchanging the order of integration and differentiation), the following

differential equations for the forward and backward wave amplitudes aP and bp respectively are
obtained [2]:

+00+00

d P [S QAv ,
U) a (xp V W) I BA w, w') aQ(x, v, w')

0 -- 0

+ Sp(v, V, w, w') bQ(x, v', w')] dw' dv6 - AP (Sa)

+00+00"d(•x i u) bP(x, v, w) = •[S pQ(v, v,, w, w') aQ(x, V', w')

Q 0 -01
+ SpQ(v, v', w, w') bQ(x, v', w')] dw' de + BP (Sb)

The wave amplitudes are related as follows to the field transforms

EP= aP- bp (6a)

HP=aP+ bP (6b)

Equations (5) are referred to as the generalized telegraphist's equations. The coupling coefficients S•(•

are associated with forward scattering (a 6 3), and backward scattering (a = /). For the like polarized

scattered field P=Q, and for the cross polarized field (P $ Q). In (5), Ap and BP are source
transforms. The generalized telegraphist's equations can be solved using numerical techniques. To
gain physical insight an iterative procedure is pursued here. To obtain the first order iterative solution,

the scattering coefficients SpQ are ignored in equation (5). The first order solutions for ap and bp are

then substituted into the right hand side of (5) and the differential equations are integrated yielding
the second order iterative solution [2]. On substituting the second order solution for the wave
amplitudes into the transform expressions for the fields (1) yields the following expressions for the cross
polarized and the co polarized scattered radiation fields:
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+00

EPQ - EoQi CiF ... T lj'TrPexp(ikd " F*)exp(-iV° " F)

-00

(Cl+Ci) dxdz d (7)

where the rough surface scattering coefficient F1P depends on the polarization of the incident an•l
scattered waves (P=H for horizontal, P=V for vertical, Q=V, H), the electromagnetic parameters of
the layered medium, and the directions of the incident and scattered radiation field [5). For simplicity
in (7) it is assumed that h=h(x). The solution for the two-dimensional surface h(x,z) can be obtained
in a straightforward manner [6]. The vector wavenumber id is defined as follows

kd = " (8)

where k is in the direction of the scattered wave

ki = kl (sinO1coso RX + coso 1 ay + sino 1sinO Rz) = kl(S 1C 0ix + Cly + S1S 7Z) (9)

and ' is in the direction of the incident wave

= k1 (sin0lcosO' Ax + cosG' NY + sinOlsinO? 9.) = kl(S'C'g + C'11 + SiS;0Z) (10)

The complex sines and cosines of the angles in equations (9) and (10) for each medium are determined
using Snell's law

k0S0 = klS 1 = k2 S 2  (11a)

Cj =• ;~ l m(kj 9<0 (Illb)

Also in (7), the normalization constant is

(Ir 1 P Q =V

N = I1 P Q=H (12)

where

N T
The Fresnel reflection coefficient R. is for waves incident upon medium j from medium i with

'13

polarization1 P. The corresponding transmission coefficient is TP = 1 + R!ý. The position vector F. is

from the origin to the point (x6. zj) on the rough surface y=h and the vector positioni vector f is from
the origin to the field point.

On expressing the denominator of (7) in an infinite geometric series, each term in the resulting
double infinte sum can be integrated by parts. A steepest deacent integration of these expressions with
respect to dv0dw results in the following expressions for the scattered radiation fields.
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+I +I,

EP -=E°G 'G_ f J C PFQTPJTSN[PqI/l/exp(i2vfh)]P [RqiR,'jexp(12v'h)]4
p,q -

x ( +l C*-+( JlC exp{i(ik-k0) .•. ) dx.du. (13)
(2p+1)C{+(2q+1C

where
-ikor~f

G= -ik 0 e (14)27-rf

and rf is the distance from the origin to the field point. In (13), the superscript f means to evaluate a

given quantity using the scattered angle Of and the scattered azimuth angle of. The vector

wavwaumber if is in the direction of the position vector .

if = k1 (sinOfcosbf S, + coso{ Xy + sinO sinbf X.) (15)

The variables x and z extend over the radar foot print (-L < x < L, -1 < z <1).
The expression for the like polarized field reduces to the well known exact solution when

h=constant, l-o, and L-oo [4]. The cross polarized field vanishes whenever If, V', and the normal
to the surface ff are coplanar [5].

3. PHYSICAL INTERPRETATION of RESULTS
Each term in the double infinite aurm (13) can be identified as a scattered wave that undergoes

multiple reflertion between the interfaces y=O and y=h(x,z). To simplify the notation in (13), let

RQ'= Ro'RQ'exp(i2v'h) (16a)
RPJ= RPJRPtexpi2vfjh) (16b)

• 01 **21 , 1

Thus RQi and RPf account for reflection and propagation of a wave making one round trip in
medium 1 (,a,, c1 ) at the incident and scattered angles respectively. Thus (13) can be expressed as
follows

ES 'G. E J J T•' [,Q' ]q C'FPQ [RPI]PTrIPN

_ C1+C1 .xpfi(if/-_i). F,} dxdz, (17)

(2p+l)C 1+(2q+1)Cs

The term in (17) with p=m and q=n represents a wave that enters (TQj) the layered structure from

above structure with polarization Q at the incident angle 0i, makes ( [RQi]n ) n round trips in

medium 1 at the incident angle with polarization Q, (.C1FPQ ) is scattered at the angle Of by the
surface element dxsdz, on h(x,z), makes m round trips in meium 1 at the scattered

angle O{ with polarization P ( [RPf]mn ), and is finally transmitted through the boundary y=O at the
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scat.angle (T ) The full wave solutions are completely reciprocal [4].

4. CONCLUSIONS
Each term in the double infinite sum representing the full wave like and cross polarized scattered

radiation field is identified as a multiply reflected electromagnetic wave between the 2 interfaces of the
layered structure. The absolutely convergent double infinite sum for the scattered field can be
truncated for practical purposes. An efficient way to do so (while maintaining reciprocity) is to retain
all the terms in the sum for which p+q-N, where N is determined by the accuracy desired.

The full wave solution reduces to the physical optics solution in the high frequency limit when the
major contributions to the scattered field come from the neighborhood of the stationary phase points.
It reduces to the perturbation solution where khrms<l and the slopes are negligible. These solutions
inherently satisfy duality and reciprocity relationships in electromagnetic theory. The Mueller matrix
elements characterizing light scattered from liquid coated terrain can be computed using the analysis
presented here. The matrix elements, in turn, can be used to facilitate remote identification of various
coating materials.
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ABSTRACT

An assesment to what extent and down to what densities the multiple
scattering processes may effect the extinction coefficient of a dispersion of identi-
cal spherical scatterers. The whole dispersion is considered as made of com-
pound nonisotropic scatterers with random orienr..tion. An application of the
theory to a dispersion of spherical metal particles is shown.
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1. Introduction

Multiple scattering piocesses are known to be of prime importance in deter-
mining the optical behavior of a dispersion of scatterers. An exact evaluation of
the effect of these processes would require, however, the knowledge of the posi-
tion of all the scatterers and would result in the solution of a system of linear
non-homogeneous equations with an order proportional to the number of the
particles [I1. Since this kind of approach is clearly impracticable, several approx-
imations have been devised such as e. g. the quaoicrystalline approximation of
Lax [2], that has been used by Varadan, Bringi and Varadan [3] to describe the
propagation through a moderate-density dispersion of ellipsoidal scatterers.

The multiple scattering processes occurring within a high-density dispersion
can be accounted for, in an average sense, through the effective medium theory .
This approach, according to the topology of the dispersion, yelds the Maxwell-
Garnet or Bruggeman mixing rules [4], that are based on so severe approxima-
tions, however, as to be applicable only to particles with very small size parame-
ter. This limitation also applies to the improvements to the Bruggeman mixing
rule proposed by Stroud and Pan [5] - to include magnetic effects - and by
Chylek and Srivastava [6] - to include the possibility of polydispersion - whereas
the approach proposed by Borghese et at. is applicable to bigger particles up to
the limit of validity of the dielectric description of a granulated medium.

When the dispersion has a low density the multiple scattering processes are
unlikely to occur and are, therefore, usually neglected. As a consequence, the
(complex) matrix of the refractive index of the dispersion, aud the related
macroscopic optical constants as well, can be calculated by simple superposition
of the normalized forward-scattering amplitudes of the individual scatterers [8].
Unfortunately, the meaning of the expression low-density dispersion is based
only on estinrates such as those given by van de Hulot 19] and by Bayvel and
Jones [101. It is just for this reason that we determined to asses to what extent
and down to what densities the multiple scattering processes may effect the
extinction coefficient of a dispersion of identical spherical scatterers.

To accomplish our task we considered each sphere as forming a binary
aggregate with any other sphere in the dispersion, the separation of the pairs
being distributed according to the pair correlation function appropriate for the

DAJA45-86-C-0003 and in part by the Consiglio NazioDale delle Ricerche
through the GNSM.
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density at hand. This amounts to considering the whole dispersion as made of
compound nonisotropic scatterers with random orientation. Now, as shown in
our preceding papers 111-131, the only quantity we need to calculate the macros-
copic optical constants of such a dispersion, taking into full account the multiple
scattering procecses that may occur within each pair, is the forward-scattering
amplitude of one of the pairs averaged over the orientations and possibly over
the separations. As our approach takes full advantage of the transformation pro-
perties of the scattered field to produce an analytical average over the orienta-
tions of the forward-scattering amplitude, the result of our calculations is a quan-
tity that still depends only on the separation of the pairs. Therefore, we must
perform numerically the required average over the separations using as a weight
function the appropriate pair correlation function. The ultimate result of all our
calculations is the forward-scattering amplitude of a sphere dressed by the effect
of the two-body multiple scattering processes. It is this dressed amplitude we
use to write the matrix of the refractive index and thus to calculate the macros-
copic optical constants of the dispersion. Since it turns out that the dressed
amplitude and the customary one differ by terms proportional to the square of
the density of the dispersion, we are able to put an upper limit to the range in
which a dispersion can be considered of low density.

The details of the theory outlined above will be expounded in section 2,
while in section 3 we will show an application to a dispersion of spherical metal
particles and will discuss the results.

2. Theory

The optical properties of a low-density dispersion of scatterers are entirely
contained in the (complex) matrix of the refractive index

27r
N kq 6,,, + 2w (1)~r

where

',,'l = f07 - *,

f4,7 being normalized forward-scattering amplitude of the i-th scatterer when
the polarization vector of the incident radiation is ;,7 . In fact, the refractive
index and the extinction coefficient of the dispersion are related to the diagonal
elements of N through the equations
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n,= Re[NqaJ I a = 2klm[N,,q] I (R)

respectively. As equation (1) stems from the assumption that for sufficiently low
density only single scattering processes may occur, the f4,,'a are those of the
independent scatterers. However, if the effect of the multiple scattering
processes is non negligible, equation (1) still applies but the fhn Is are to be
modified to account of the presence of all the other scatterers. We will show
how this can be done with reference to a low-density dispersion of identical
spherical particles.

In the absence of multiple scattering processes the amplitude f of one of the
spheres, say the i-th, is giver by

-4irk P his W,[)3 8

where the wljRL 's are the multipole amplitudes of the incident plane wave and
the R?? 's are the customary Mie amplitudes for a single sphere: the superscript
p is a parity index that distinguishes the magnetic multipoles ( p = I ) from
the electric ones ( p- = ).

Let us now assume that another sphere, say the '-th, happens to be at the
vector distance Ri; from the i-th. All the multiple scattering processes that may
occur between these two scatterers can be fully accounted for by considering the
two particles as a single compound scatterer of the kind we studied in our
preceding papers [11,12]. As a consequence, characterizing with a prime the
quantities associated with the i-th particle in the presence of the j.th, eq. (3) can
be rewritten as

I'",. = i.99 A 4W", (4)

where the A( • s are the multipole amplitudes of the field scattered by the i-
th particle, considered as part of an aggregate, and are given in ref. [11,12]. It
may be useful to emphasize that the amplitudes AJ',d depend .on the separation
of the spheres as well as on the orientation of the aggregate with respect to the
incident field, but need not be calculated in practice as will be shown below.

We now define the effective scattering amplitude of the i-th particle in the
presence of all the other particles in the dispersion as
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(5i)

and rewrite eq. (1) as

27r

6,,.,, +

Till now, we operated as if we knew the vector positions of all the spheres in
the dispersion. Since this is not true, we can perform an average over the distri-
bution of the particles trough the method of the reduced distribution functions
[14]. Let us, indeed rewrite as' a

A ='" ht ox + EA ,"" (6)

with

A f'i n ' n " -l ,n "(7)

Now, if g (R12) is the pair correlation function appropriate to the density at
hand, the averaged effective amplitude of the dispersion turns out to be

</14> - pff l ,,,,,.drl+ p2ff.f' 12 ,,,n'(• 2 )g (1 2)drxdr 2 , -(8)

where we define

14=

and the argument :g12 has been added to A'a, to recall that this quantity
depends on the relative position of the i-th particle with respect to the j-th.
Furthermore, we notice that f ,q does not depend on the position of the parti-
cle 1 and that, since g (R12) depends only on the magnitude R12 , the double
integral in eq. (8) is equivalent to two separate averages, one over the separation
and the other over the orientation of the pairs. We are able to perform this
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latter average analytically as explained in full detail in ref. [13] and get, as a
result, an amplitude that is still in the form of eq.(4) but for the substitution of
the A , ,.) 'a with their averages. Indicating the quantities averaged over the
orientations with 7'12 ,,,W.(R) we arrive at the final result

N,,. 6 k F2"4 + 2 P A712.A' (R)Q(R)R'dRI1 (9)

As anticipated in section 1 and in agreement with the general results of statisti-
cal mechanics[141, equation (9) shows at once that, in the presence of two-body
multiple scattering processes, the effective scattering amplitude of the particles
contain a correction that depends on the square of the density.

S. Application to metal particles

We will now apply the theory of the preceeding section to a dispersion of
spherical metal particles. As our aim is to show that the correction term in eq.
(9) produce visible effects we choose for the dielectric function of *he particles
the free-electron Drude form

2

U=1 w(W+srw,)

The parameters of oar calculation are those appropriate for silver particles (
W-- 5.7 -- 10asec- 1,-i =0.01 ) with radius ro = 5 - 10"sm and a size parameter
kr 0=0.01 ;thus the wavenumber of the incident radiation k = 2 1- 0 6m-' and

the ratio -ý--.-0.01 . In fig I we report the function Im[A71 2,,,.] ,hereafter
wp

referred to as Af for short, as a function of the separation of the spheres. It is
apparent that Af , though small, is quite comparable with f itself for small
separations. The figure also shows that, as expected, Af becomes very small for
an interparticle separation of the order of 10-6m. In practice we were able to
extend our calculations only up to an interparticle distance of
Rt= 0.140 A 10- 4 m i.e. up to 292 ro , because for larger distances some numeri-
cal instabilities start to occur. Now, according to eq. (9), Af must be integrated
to infinity after multiplication by the pair correlation function. This latter, in
the range of densities we are interested in, can be taken as
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{1 r_>r0
g(r) = r<r 0

so that, for the convergence of the integral, Af must go to zero faster than R -2.
To clarify this point we attempted an extrapolation of the computed results on
the assumption of a dependence on R of the form a exp ( b R ), starting from the
last 5 calculated points before the appearance of the instabilities. We found that
when a = -2.8 10Sandb = 2.64 1027 the correlation coefficient equals 1. This
results allows us to state that the integral from R, to oo is quite negligible and
that we can confidently rely on the calculated values. Therefore, we report in
Fig. 2 the correction to the extinction coefficient as a function of the packing
fraction of the dispersion in the form

Im f*JAT 12,,1,1(R)R 2dR

=a - 1 -E II -Ap
aw2 ImAt.}- p(10)

i.e. as a ratio to the extinction coefficient of a dispersion of independent spheres
with the same density Fig. 2 sh',ws that the i-.&.-iene of the twc.-b-Ay multiple
scattering effects on the extinction coefficient may be considerable and is, in any
event, non-negligible except at very low densities. This may seem surprising on
account of the asymptotic behavior of A f that goes to zero, with increasing
separation, faster than R- 2 . This asymptotic behaviour is necessary to ensure
the convergence of the integral in eq. (10) and confirms that the interparticle
effects become negligible for separations -50r 0 . Nevertheless, when R increases,
the number of the particles that may interact with a given one increases even
more thus yelding the results of fig. 2.

In conclusion, although the method presented in this paper may appear as
an heuristic one, it can be shown to be equivalent to a truncation of Ttversky s'
equation to the term including pair interactions. It is to be emphasised, how-
ever, that our method is based on the imposition uf the correct boundary condi-
tions at the surface of both the components of the pair. Therefore, all the multi-
ple scattering processes that can arise between two bodies are included in our
calculations, although these processes are of an order higher tian the second
order term that is actually included in the Twersky series. More precisely, our
approach includes all the even order terms involving two bodies. It is just this
limitation that restricts the applicability of our approach to low-density disper-
sions. Extension of cur procedure to higher densities, would require the inclusion
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of the three-body terms, at least, and would thus an undue - and perhaps
impractical - increase of the computational effort.
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ABSTRACT

Inversion of multiwavelength backscattering lidar signals can, in theory,
provide the aerosol size distribution. However, the inversion results are
restricted to a very thin optical medium for which a single-scattering
approximation is valid, and it is extremely difficult to mcasure simultaneously
backscattered lidar signals of more than a few wavelengths. A method for
measuring lidar multiple scattering with a simple geometry is presented. In this
method a detector measures alternately the total scattering (single and multiple)
and the multiple scattering alone. The single wavelength range-resolved
measurements (when the multiple scattering is approximated as double scattering)
contain information about the aerosol size distribution through the double
scattering phase function. A method to recover the aerosol double scattering
phase function and its aerosol size distribution is shown.

I. INTRODUCTION

In optically dense media, such as clouds and fogs, multiple scattering
makes a significant contribution to the measured backscattered lidar signal.
While the presence of multiple scattering in lidar measurements causes
difficulties in the interpretation of the lidar backscattered signal (which is
based on a single-scattering approximation), it does provide an additional piece
of information, when it can be separated from the single-scattering contribution.
An example of this difficulty is the fact that the coefficient deduced from the
single scattering lidar equation is much smaller than the true extinction
coefficient (Pal and Carswell, 1976). However, depolarization due to multiple
scattering (Pal and Carswell, 1976; Cohen, 1975; and Allen and Platt, 1977) can
give information on the phase of the cloud particles.

Information about the aerosol size distribution is important in many
different areas of the atmospheric sciences (Prospero et al., 1983; Herman
et al., 1971; and Toon and Pollack, 1976). Host methods used in the last decade
for inferring aerosol size distributions as a local property of a scattering
volume involved spectral backscattered and extinction measurements obtained by
a monostatic lidar (Capps et al., 1982; Ben-David et al. 1988; Zuev and Natts,
1983; Ben-David and Herman, 1985; and Reagan and Herman, 1972).

Multiwavelength backscattered measurements contain much information (Dave,
1971; and Twomey and Howell, 1967) about the aerosol size distribution. For
multiwavelength measurements, several detectors, amplifiers, wavelength-dependent
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optics, and the exact energy calibration for each wavelength, are needed.
Therefore, in practice it is extremely difficult to measure simultaneously the
backscattered lidar return of more than a few wavelength#, and those are usually
restricted to a relatively narrow range of wavelength.

In this paper, we present a method for measuring range resolved single
and multiple scattering in one wavelength with one detector. We show how these
measurements can be used to obtain the double scattering phase function of the
aerosols from which the aerosol size distribution function can be inferred.

2. MULTIPLE SCATTERING MEASUREMENTS

Experimentally, few measurements have been made of the multiple-scattering
contribution to the backscattered signal of a pulsed lidar system (Allen and
Platt, 1977; Ryan, et al., 19791 Carswell and Pal, 1980; and Pal and Carswell,
1985). In these measurements, spatial filters in the focal plane of the receiver
were used to block the receiver field of view (FOV) corresponding to the
diverging transmitted beam. Consequently, the measured signal was z result of
multiple-scattering effects originating from the spatial volume outside the
blocked FOV only. The multiple scattersd measured signal contained contributions
of multiple-scattered photons that were scattered in all scattering angles, the
last scattering event of which was within the unblocked spatial volume.

Our measuring technique makes it possible to simultaneously measure total
(single and multiple) scattering and multiple scattering alone, and by
controlling the geometry of the system we can determine the multiple-scattering
region. The main parts of the measuring system are given in Fig. I&. The laser
transmits a pulse within a divergence angle a in two directions #I and *2 at
time t and t + At respectively (At depends on the laser pulse repetition rate).
The angle 01 must be within the telescope FOV S. The angle *2 can be outside the
telescope FOV. In the following description, we will assume the more general
situation where *2 is within the telescope FOV. The two directions are set by
the rotation range of the prism which deflects the laser pulses. In the focal
plane of the telescope (i.e., the receiver), there is an aluminum plate with two
holes, s, and •2. The FOV of Aach hole is s and the angular distance between the
centers of s1 and s2 is d such that a < s < d. The locations of the holes sa and

s2 are set such that at a time t (laser position at *1 [Fig. 1b]), the photon
multiplier (PM), which is viewing the hole sa only, will detect a signal. The
signal consists of single-scattering contributions within the laser beam
divergence a and a multiple-scattering contribution from the spatial volume
determined by the FOV of hole a, around the laser beam divergence a > a. The
signal detected at the time t is noted as the signal g, (single and multiple
scattering). At time t + at (laser position at 02 [Fig. ic]), the single-
scattered photons will go through hole sa. The multiple-scoattered photons
detected by the PM will be only those that were redirected from direction 02 into
the FOV a of hole al, which is an angular distance d away from 02. The signal
detected at time t + At ie noted as a multiple-scattered signal 92, because there
must be at least tvo scattering events to redirect photons from direction 02 into
the FOV of al. In practice it is difficult to restrict the FOV of the PM to a
around s9, therefore hole s, is kept closed. In this way, the PM will view only
photons passing through hole sa.

If a homogeneous and steady state scattering medium for the measuring
zime scale is assumed, we can regard the measured signal as a time sequence of
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Fig. 1-a. Schematic of the Iidar system for multiple scattering
measurements.
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FOV S Through Divergence ar
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Fig. 1-b. The lidar system at time t, pointing at direction F1.
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Fig. 1-c. The lidar system at time t+At, pointing at direction 4'2.

signal S1, consisting of both single scattering and multiple scattering, and g2,
consisting of multiple scattering only. The multiple-scattering component
measured at laser position *I is different from the multiple-scattered component
measured at laser position *2 because of the different geometry (scattering
angles) for the two. However, if the FOV A is not much larger than the beam
divergence a, it is expected that the multiple-scattered contribution for laser
position *1 will be much smaller than the multiple-scattered contribution
detected in the measured signal for laser position *2"

In the experiment the laser beam divergence a and the FOV A of the hole at
are small compared to the distance between the directions 0 and *2 (Fig. 1-a)
at a distance R0 from the laser, so that the geometry of the lidar system can be
greatly simplified, as shown in Fig. 2. In this figure, the spatial volumes of
holes a, and a. are shown as two narrow cylinders separated by the distance
D - dRE. At a time t v At (position 02 of the laser), the laser pulse propagates
along the left-hand cylinder and the detector will measure the return signal
along the right-hand cylinder. The height location R÷+ Zu is the height where
a single-scattering event took place when the laser was directed at direction
41 (i.e., the laser beam was in the FOV of the detector). The time corresponding
to this scattering event is t - 2(RN + Z,)/c where c is the speed of light.
In this figure, the detector at Sa will measure scattering events of the order 2
(double scattering) and higher. In the case of double scattering, the first
scattering event, scattering angle 01, will take place at height % + Z,, along
the left-hand cylinder. The second scattering event, scattering angle 180-9
back to the PM, will take place at a height %, + Z2 along the right-hand
cylinder. From the lidar measurements g1 (t') and g,(tl) for each laser position
0, and Oz (where t" < At is a time between laser pulses before the laser changes
its position), we can obtain the total return signal gl(t ) from location R + Z,
and the multiple scattering (mainly double scattering for the range of the
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Fig. 2. A simplified geometry for the lidar system at position 42.

optical depth of interest) signal, g2 (t ), for the first scattering event at
height N + Zi < N + Z" and the second scattering event at

+ Z2 = + Z, + Dltan(91 ) along the right-hand cylinder. The scattering angle
9, as a function of Z. and D (for all Z, < Z.), for which t' - 2(R + Z.)/c is
given by:

O1 2tan 't 2( D . Z1 1

For 0t > 90,Z, must be Z1 < -D/tan(O1 ) < Zu (i.e., the second scattering will
occur above N). As the laser pulse penetrates the scattering medium (as Z
increases), the range of Zt that can contribute to the double scattering measuredJ
at lidar position *2 will increase as will the ranpe of scattering angles 01 that
will contribute to double scattering for which t - 2(RO + Zf)/c. The range of
a, as a function of single scattering location Z. within the scattering medium
for a constant D - 10 m is shown in Fig. 3.

The same experiment can be made without a rotating prism if the laser is
directed at direction #,, and two PMs, two amplifiers, and two A/D. are used to
detect the received signal through the two holes *I and s2. In our experiment
we chose to use a rotating prism (rotating back and forth) and therefore used
only one PH, amplifier, and A/D, which received the return signal through hole s,
while hole 42 remained closed.

Figure 4 shows preliminary measurements for the geometry d - 1 mrad,
a - 0.5 mrad, and R0 - 6 k1m. The lidar pulse width is 10 nsec; the pulse
repetition rate is 20 Hz (i.e., &t - 50 msec) and the electronic integration
time is 150 nsec. The measurements were averaged over 6 sec (i.e., 60 pulses
in each direction 01 and 02). The first curve (square symbols), in relative
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Fig. 3. The range of scattering angles (all angles between Oemin and
emax) that contribute to double scattering returns as a function of
single scattering location Z8S for D= 10 m.
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Fig. 4. Measurements for lidar position 'I), and 'Fa (g, and g2), taken on
10-30-88 at 17:08 for a cloud at R0=6 km as a function of
penetration depth within the cloud.
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units, is the measured signal SX, when the lidar was pointing at *I. If the
cloud edge was well defined and the cloud yas a homogeneous scattering medium,
the signal would have dropped off monotonically as a function of R9 + Z .
However, in our experiment, the cloud edge was not well defined and ite
integration time of the system corresponded to about 20 m. Therefore, the total
scattering curve g, increases with penetration depth until Z. - 40 m and then
falls off with increasing Z . The second curve (plus symbols), in the same
relative units times 10, shows the multiple-scattering signal g2 measured when
the laser was directed in the #2 direction. This curve shows that the multiple
scattering increases as the pulse penetrates the cloud. For ZO > 50 m, the two-
way attenuation dominates the contribution of the multiple scattering and the
measured signal decreases with increased penetration depth. The third curve
(diamond symbols) shows the interesting effect of the increased contribution of
the multiple scattering, representing the ratio between the multiple scattering
for laser position *2 to the total scattering for laser position *I (i.e., $2/9i)
as a function of penetration depth in the cloud. In the first 20 m, the
multiple-scattering signal is very weak and therefore the signal-to-noise ratio
is poor as reflected by the oscillations in this curve.

A set of measurements was conducted in order to ensure that, when the lidar
is pointing at *2, there is no single scattering measured by the detector which
is only 1 mrad away from s2 (the angular distance between the center of a1 and
the center of the laser beam). It was concluded that less than 1% of the single
scattering from direction 02 will be measured by the detector. Therefore, the
second curve of Fig. 4 (g2) contains, at most, a 11 contribution due to the laser
beam cross-section profile (which is not zero at angular distances larger than
a).

3. AEROSOL SIZE DISTRIBUTION AS INFERRED
FROM DOUBLE-SCATTERING MEASUREMENTS

One of the main possible applications for our method is in deducing the
aerosol size distribution of a dense homogcneous scattering medium. The aerosol
size distribution can be deduced from a dcuble scattering phase function that
can be obtained from measurements 92 (t I). The double-scattering contribution to
the multiple-scattering measurements for different locations of Z. can be
written as:

g2 (t' - 2(R + Z,)/c) - J m(ZuO) P(9) P(180 - 6) dO (2)f 0min (Zu)

where 8Oex and Omin can be taken from Fig. 3, and P(9) is the phase function for
the medium. From Eq. (2) we can see that the range of integration over B is a
function of the penetration depth Z. (i.e., a function of t ) in the cloud.
Therefore, from the measurements 92 (Z,), we can, in principle, obtain the double
scattering phase function P(8) P(180 - 0), which contains information about the
average aerosol size distribution in the cloud as shown below. K(Zs, 0) is a
weighting function for the path travelled by a photon, which was scattered at
an angle 0 from the first scattering event and at an angle (180 - B) after the
second scattering event, and accounts for the relative sizes of the scattering
volumes involved. We note that when the penetration depth into the cloud is
small, the double-scattering contribution to the multiple-scattering measurements
is dominant. The phase function is given by:

P() - Jr (r,O) n(r) dr (3)

401



where Q4(r,8) is the differential scattering cross section at an angle 9 for an
aerosol of radius r, and n(r) is the aerosol number density distribution
function.

The quantity P(O) P(180 - 0) describes the nonlinear interaction of single
scattering from a particle of radius r, at a scattering angle 8, with a second
scattering at an angle (180 - 6) from a particle of radius r2. This process is
given in Eq. (4):

P(O) P(180 - 8) - f f Q•(r 1 ,8) Q(r 2 1180 - 9) n(rl) n(r 2) drldr2  (4)

This equation can be used to solve for the aerosol number density n(r)
distribution by using Newton Raphson's iterative technique (Courant and Hilbert,
1953).

Based on Eq. (2), a mathematical inversion technique can now be used in
order to compute an average value of P(B) P(180 - 0) for Jifferent scattering
angles 9; for Z. M D/2 (- 5 m in Fig. 3) the multiple-scattering measurements
g2(Z") will consist of double scattering arising only from the 9 - 90 at the
cloud base, N (i.e., Z1 - 0). As a result, we can compute from g(Z, - D/2) of
Eq. (2) an average value p(90) 2 for P(90) 2 . For the next Z", such as Z - 7.5 m
in Fig. 3, the double scattering events will spread over the range of 0 between
approximately 80 and 100. The measurements g(Z. - 7.5) can thus be approximated
with Eq. (2) to give:

90-A
g2(Z.- 7.5) - K(Z,.,90) P(90) 22A + f K(ZS,8) P(d) P(180 - 9) do

80
100 (5)

+ f K(Zu,O) P(O) P(180 - 9) dO
Q90+A

where A is the angular range for which P(O) - P(90) for (90 - < < B 90 + 4).
Equation (5) can be solved for an average value for P(85) P(95) using P(90) 2 from
the measurements g(Z, M D / 2) using Eq. (6):

g(Z" W 7.5) - P(90) 2K(ZS,90)2a

,••90-,& 900 (Z,) ](6)
+ P(85) P(95)J 9 K(ZS,,,) do + K(ZMO) del

80 90+6

By using this process, we can find average values for P(O) P(80 - 0) from the
multiple-scattering measurements as a function of Z",.

The numerical technique for obtaining the double scattering phase function
can be greatly simplified analytically by using the symmetry of the geometry of
Fig. 2. For 4n arbitrary single-scattering location ZM, the scattering angle 9,
at Z! - 0 is equal to the scattering angle 7r - 01 for the location Z1 - ZMAX. The
scattering angle 9 is given by:

o - 2 tan' 2 (Z.- - 7r-2 tan, 2(Z D. Z (7)
2(ZI - S 1) j

Zg Zmax ZI-0
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ZX is the farthest location on the left-hand cylinder (Fig. 2) from which a
double-scattered photon will arrive at the detector at the same time as a
backscattered photon from a location Z,,, and is given by:

Z -. 
(8)

tan [2tan'1 ( D

The double-scattering signal $2(Z ) that arrives at the detector at the
same time as a backecattered signal from height ZM can be vritten as:

82(Zu) " Ae020  P(O) P(180 - 0) Sia~fa) dZ1  (9)

where D / Sin(8) is the radial distance between Z1 and Z2 of Fig. 2; A is a
constant that includes the factor I / R2 and other system parameters; and a is
the volume extinction coefficient of the medium.

Multiplying E q,(9) by 0+2"t taking a derivative with respect to Z, and
using the identity - "f from Eq. (1) we obtain:

az, aZ1

i. [9 2(Z.) e+2036] f fZmsuz [P(9) P(180 - 9) 1±sige ]dZj
aZ0 ao ZD

(10)
+ P(q) p(180 - 8) Sin2(8) aZM

D2 a ZA Z . maxI

The first integral of the right-hand side of Eq. (9) is zero as can be shovm by
using the symmetry between 9mi, and 8Omx (i.e., Omi at Z, - 0 is 180 - 8Om - Omx
at Z, - Zmax).

Rearranging Eq. (10) and noting that Zmax is a continuous function of ZA
(Eq. (8)) as is 0 (Eq. (7)), we can write the double scattering phase function
as:

P [ 9(Z. - Zma)] [I P1o - 9(Z"_Za

- i. [gz,(Ze+2'Zs]D. (1

aZSS

Z1-Zmax

Thus given the double-scattering measurements g2(Z.) and the volume extinction
coefficient a, the double scattering phase function of the scattering medium can
be computed.
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In our experiment, the cloud was not homogeneous (Fig. 4) and therefore
the inferred double scattering phase function contained large errors, as did the
recovered aerosol size distribution through the Newton Raphson iterative
algorithm. In Fig. 5 we present results of the inferred aerosol size
distribution functions, as obtained from simulated double scattering phase
function of a homogeneous cloud model C1 (Deirmendjian, 1969) with a - 17 kmin,
wavelength of 1.06 jim, and a real refractive index of 1.34. The phase function
was averaged over 10-degree intervals. This figure shows the inferred aerosol
size distribution for various rm8 errors in the simulated measurements. We can
see that the main features of the aerosol size distribution function were
recovered reasonably well.

4. SWOIARY

In this paper, we have presented a method for measuring simultaneously
multiple and total scattering (mainly single scattering) with a monostatic one
wavelength lidar system and one detector. This method is relatively simple and
can be used to contribute to the few multiple-scattering measurements of an
optically dense medium. The multiple-scattering measurements (when approximated
as double scattering) contain information about the aerosol size distribution
through the double scattering phase function. The double scattering phase
function can be computed from the range resolved multiple-scattering
measurements. A Newton Raphson iterative algorithm is used to recover the
aerosol size distribution function from the double scattering phase function.
The main features of the distribution were recovered reasonably well for
simulated rm8 errors up to 7%.

600-

500

-o- No Error,
True Distribution"U 400 - 1% Error

W• -0-3% Error
-a-- 7% Error

-0 300-

Z= ,,
2 200

0 -T_
0 2 3 4 5

Radius (,m)

Fig. 5. Aerosol size distribution function as obtained from an inversion of

simulated double scattering measurements of various rms errors.
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ABSTRACT

We consider electromagnetic or optical wave scattering from fractal surfaces and structures.

These surfaces are modelled by a continuous bandlimited fractal function, namely the roughness
fractal function. Kirchhoff and generalized Rayleigh approaches are respectively used for
scattering from rough fractal surfaces of a finite extend. Rayleigh-Gans approximation and
perturbation expansions are used for scattering form fractally corrugated cylinders. Ongoing work
concerns calculations of higher order and formulations valid in extended regimes of frequency and
roughness.
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INTRODUCTION
The fractal concept was first popularized from the coastline problem [1j. In this problem,

the length or perimeter of a rough coastline is measured by yardsticks of variable length.
However, this perimeter increases as the measuring yardstick decreases due to the fact that
increasingly fine structure of the coastline can be measured or "seen" as the yardstick becomes
shorter. A fractal dimension is introduced [11 to quantify the roughness by the rate at which the

perimeter increases with decreasing yardstick size.

In the problem of wave interaction with fractally rz, cgb surfaces, the wavelength of the
incident wave acts as a yardstick which probes the fractal nature of the rough surfaces at different
scales as its size is varied [C,G]. In this way, the increasingly fine structure of the rough objects
can be "seen" as the wavelength becomes shorter. The fractal characteristics of these objects are
embedded in the variation of their scattering properties as the wavelength is changed.

We consider the scattering of electromagnetic waves from a family of irregular rough
objects characterized by bandlimited fractal functions such as the bandlimited Weierstrass function.
This method provides a unified and realistic novel method for examining rough objects without the
use of r ioin functions and averaging techniques. In this manuscript, we first discuss various
continuous fractal functions and their fractal dimensions. The Kirchhoff approach to scattering
from fractally corrugated surfaces is then presented as an example. We explain the relations
between the geometrical properties of multi-scaled fractal surfaces and its wave scattering
properties through angular or frequency scattering pattern. More detailed analysis on this example

is available in Ref. [F].

Fractal electrodynamics is a blend of electromagnetic theory with fractal geometry. Our
work in wave interactions with fractal objects includes wave scattering from a family of canonical
fractal objects such as fractally corrugated surfaces, fractally corrugated cylinders, and fractally
fluted cylinders. The undisturbed incident field method is used in each case. In particular a
generalized Rayleigh approach is used for scattering from fractally rough surfaces in Ref. [B] as a
complement to the Kirchhoff approach used here. For cylindrical geometry, we studied wave
scattering from fractally corrugated (longitudinal variation) cylinder in Ref. [G] using Rayleigh-
Gans approximation while the scattering properties of fractally fluted (cross sectional variation)
cylinders are treated in Ref. [E] through perturbation expansions. We found analytical expressions
and carried out numerical calculations for these fractal scattering problems. In each investigation,
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we relate the angular or frequency distribution of the scattering field to the fractal descriptors

including the fractal dimension of these objects.

The work reported here an'l in Ref. [B,C,D,E,F,G] are concerned with continuous fractal

models. Our recent work [A] considering the reflection and transmission properties of discrete

fractal multilayers forms its complement. In the next section, different continuous fractal models

are discussed and compared.

FRACTAL MODELS

The Weierstrassfunction was discussed by Mandelbrot [1] and has the fractal properties of

multiple scales and self-similarity. It is an infinite summation of weighted exponential terms and

can be written as,

cc

W(x) = i b (D - 2)n (I - eibnx) . (b > 1)(1

The real or imaginary part of (1), taken by itself, is also a self-similar fractal function. The self-

similarity of the Weierstrass functions can be demonstrated by the relation,

W(bx) = b(2 - D) W(x). (2)

These Weierstrass functions are self-similar on all scales, from the infinitesimal to the infinitely

large. This originates the unbounded nature of Weierstrass functions. It can be shown that the

derivatives of Weierstrass functions are also unbounded, with the possible exception at some

discrete points. In conclusion, these Weierstrass functions are everywhere continuous, almost

everywhere unbounded, and almost nowhere differentiable.

Although the Weierstrass functions are mathematically interesting, their unbounded nature

makes them impractical for use in modeling physical objects. Since every physical object has an

inner and an outer scale. A bandlimited Weierstrassfunction, which truncates the summed terms

to a finite number, was then introduced [2]. This modified version of the Weierstrass function is

self-similar on a finite regime of size orders and bounded. After normalization with regard to the

function variance, it reads,
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.,2 [1 - b(2D-4 )]1/ 2  N2
I bn(D"2) cos(2"-sbnx+4)), (3)

WB(x) -1 [b(2D. 4)Ni - b(2D.4)(N2+l)]1/
2 n=N1

where s is the size scaling parameter, b (b > 1) is the frequency scaling parameter,*the O are

randomly selected phases, and TI is the standard deviation or rms height of the function defined by,

L
12 = = Lim WB(x)2 dx. (4)

It can be shown that this bandlimited Weierstrass function (3) has zero mean, that is

L
<WB(x)> = Lm _[W(x) dx = 0. (5)

The total number of tones or harmonics is N2 - N, + 1.

We consider here an equivalent zero-mean bandlimited fractdl fE..nction, denoted the

roughness fractal function expressed as a weighted sum of periodic functions,

N-I
fr<x) = TIC I an sin (bnx + On) (6)

n=O

where a (0 < a < 1) is the amplitude scaling parameter, Kc is the fundamental spatial wavenumber, b

(> 1) is the frequency scaling parameter, the n are arbitrary phases, and N is the number of tones.

The amplitude normalization factor,

2(1 - a2)C = \[( i - a2N) (7)

is chosen so that the function (6) has a standard deviation or rms height ij in the sense of (4). This

function has a finite band of qpatial frequencies and exhibits self-similarity over a corresponding

finite range of resolution. The ampiitude scaling parameter a in the function gives a measure of the

surface roughness ranging from a = 0 (smooth periodic curve) to a = 1 (rough, area-filling curve).

Note that the sine function in (6) can be replaced by other periodic functions. One of the discrete
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fractal function is obtained by replacing the sine function by a periodic rectangular function. We
discuss the fractal dimensions of these different fractal models in the following section.

FRACTAL DIMENSIONS
In each one of the fractal functions discussed in the previous section, the periodic functions

of increasing frequency in the summation produce the fine structure. As in the coastline problem,
finer and finer structure of the function can be measured when the measuring "yardstick" becomes
shorter and shorter. The rate at which the measured quantity increases as the measuring yardstick

decreases is quantified by the fractal dimension, a measure of curve roughness. Usually several

fractal dimensions are appropriate for a given fractal curve, each characterizing a different physical
process.

We first discuss the fractal dimension of the Weierstrass functions. Traditionally, the

parameter D (1 < D < 2) in the Weierstrass functions (1) is denoted the Weierstrass fractal
dimension. When D -+ 2, weights ibr all exponential terms in the summation are unity. The
corresponding curves are area-filling due to the large amplitude high frequency components. It
coincides with our physical intuition. In the other limit D -- 1, however, a contradiction arises.

At this limit, relation (2) reads,

W(bx) = b W(x), (8)

which indicates the scaling on both horizontal and vertical axes are the same. Therefore, at D = 1,

the Weierstrass functions do not reduce to smooth one-dimensional geometry, rather it has perfect
self-similarity. The corresponding curve is still somewhat rough. Its measured perimeter will
becomes longer and longer when shorter and shorter yardstick are used, hence from the yardstick

concept we expect its fractal dimension to be larger than one. Note that Weierstrass functions (1)

are well defined and do not have su4den changes on (- < D < 2). These functions become
smooth as D -* -o.

A smooth curve is one-dimensional while an area is two dimensional in the sense of
Euclidean dimension. Intuitively, we expect the fractal dimension as a measure of curve roughness

to fill this gap, varying continuously from one-dimensional for smooth curves to two-dimensional

for area-filling rough curves in the sense of fractal dimension. For the roughness fractal function
(6), we use Dr (= 1 + a ) as the roughness fractal dimension which varies from Dr = 1 for smooth
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sinusoidal to Dr = 2 for area-filling rough. This fractal dimension provides a good measure for
curve roughness and is suitable for the study of rough surface scattering. The Weierstrass fractal
dimension D of function (6) is given by,

D = 2 logkb) (9)
- log(b)

Although the yardstick fractal dimension for these fractal functions are not available
analytically, numerically we have found that it's different from its corresponding Weierstrass
fractal dimension [E]. Note that although different fractal dimensions take on different values for a
given fractal function, a larger value in any fractal dimension always corresponds to increased

curve roughness.

SCATTERING FROM FRACTALLY CORRUGATED SURFACES
We consider here the scattering from perfectly-conducting fractally-corrugated rough

surfaces. Shown in Fig. 1, the incident plane wave impinges on a one-dimensional rough surface
characterized by fractal functionfr(x) extending from x = .-L to x = L.

z

ox

Fig. 1. The geometry of electromagnetic wave scattering in a plane from a rough surface where
the subscripts i and s indicate parameters associated with incident and scattered waves, respectively.
Here k represents the wavevector and Oi = 30'.

This problem is formulated by the Kirchhoff approximation [3] with the assumption that
the rough surfaces are locally flat. This is satisfied when the wavelength of the incident wave is

small relative to the radius of curvature of the surface irregularities. After neglecting the edge effect
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and using a Bessel function identity, the closed-form Kirchhoff solution for the scattering
coefficient (Esc/Esco) is found to be,

cer1 + cos(e1+es)j=±ec1 x (10)

N-i N-I N-i
e x p (i 0 rnen) n Jm [C(D-l)vzo sinc[(vx+Ko , mnbn)L].

M0, n1 .... , mN1 =: - n n-0 n=O

where the wave vector projections are given by,

vx = k(sin0i - sin0s) (U1)

vz = -k(cos0i + cos0s) (12)

and the superscripts + and - denote the perpendicular and parallel polarizations. The sinc function
is defined as sinc(x) = sin(x)/x.

Consider large patch sizes (L >> A0 = 2it/Ko). Expanding Bessel functions for small k-l,

the scattering coefficient of the fractal surface in the specular direction (ei = 0s) yields,

yt - ± [ - 2 (ktI)2 cos2Oi] (13)

This equation shows that the decrement in the specular scattering is proportional to the variance of

the rough surface. Note that equation (13) is consistent with the result derived for the average

scattering coefficient of random surfaces. This shows that only the relative rms height of the

surface determines the scattering intensity in the specular direction whether the surface is fractal or
random, in the low frequency regime.

We numerically calculate the scattering coefficient y for different fractal dimensions.

Plotted in logarithmic scale, Fig. 2 shows scattering patterns from fractal surfaces of several fractal
dimensions with b = 2e/3 - 1.8122, N = 6, 6i = 30', 1 = 0.05%, and 2L = 40X. Each plot in Fig.

2 is the average result of ten members of the ensemble, each with a different set of n forfr(x).

Two envelopes are indicated in the plots. The background envelope (slope - -1) is due to the
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finite patch size and consists of the specularly reflected main beam and its sidelobes. The coupling

lobe envelope (variable slope) is due to surface coupling and consists of the first-order coupling of
the surface harmonics. The slope of the coupling lobe envelope is indicative of surface roughness.

These slopes are found to be -2.50, -1.92, -1.22, and -0.72 for fractal dimensions D = 1.05,

1.30, 1.50, and 1.70, respectively. This implies that the magnitude of slope for our continuous

bandlimited fractal surfaces varies approximately as 2.7(2 - D). The spatial frequency parameter

b, which determines the separation of the spatial frequency of the harmonics, controls the angular

separation of the coupling beams in accordance with conservation of momentum.

r PftISwlam Scaztering. Dr -I AS -ý" 0 Surfam Scamrin& D - 1.30

-5 .5

-10 -10 ,

-15 -1)

.20 .20 -15 -10 .5 0 -25 .20 .15 .10 .5 0

0 F .cW Su-fsce Sceftem. Dr -I..JO - PrachSvrf tnS Dr=1.70

-5- .5.

-10- -10

.15 -15

.2 .20 .1, .10 .5 0 " 56 .0 45 -10 .5 0

Fig. 2. The average differential scattering coefficient versus sin[(es-30")/2], both in dB scales, for
the roughness fractal dimensions Dr = 1.05, 1.30, 1.50, and 1.70, respectively, from upper left to
lower right. The envelope slopes of coupling sidelobes vary monotonically with the fractal
dimension while the background slope is constant for varying Dr.

CONCLUSION
We consider the blend of electromagnetic theory with fractal geometry, denoted fractal

electrodynamics [C]. Here, we discuss different functions for fractal modelling, and techniques

for exploring several problems in fractal electrodynamics. We relate the geometrical surface
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roughness to the envelope slope value of scattering sidelobes via the roughness fractal dimension.

Both mathematical and physical properties are discussed throughout the investigation.

We note that usually several fractal dimensions are appropriate for a given fractal curve,

each characterizing a different physical process. Bandlimited fractal functions are suitable for

physical modelling. The Kirchhoff approach for scattering from fractally corrugated surfaces is

presented here. This electromagnetic calculation technique used here is a first order approximation

applicable to high frequency regime. Low frequency interrogation will provide the average effect

(specular reflection) of the scattering surface and is not of interest here. Our future work is on

calculations of higher order and formulations of moderate frequency regime. Investigations using

other approaches or for different continuous fractal configurations are available in Ref.

[B,C,D,E,G,H,J,2,3,4,6]. Recently, wave interactions with discrete fractals are also considered

elsewhere [A,I].
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